
How Can Infrastructure as Code Accelerate Data
Center Bring-ups? A Case Study at ByteDance

Xianhao Jin∗, Yifei Feng∗, Yufei Gao†, Yongning Hu∗, Jie Huang∗, Kun Xia∗, Luchuan Guo∗
ByteDance Ltd.

∗San Jose, CA, USA †Seattle, WA, USA
{xianhao.jin, yifei.feng, yufei.gao, yongning.hu, jie.huang, kun.xia, luchuanguo}@bytedance.com

Abstract—Software companies are establishing new data cen-
ters to enhance software performance with lower response times
as well as meet security requirements for storing local user
data. ByteDance also has a strong need to deploy its services
to new data centers worldwide quickly and with minimal error.
Unfortunately, this process can also be time-consuming and error-
prone, e.g., services often have dependencies on one another,
requiring a strict deployment execution order. Moreover, the
high similarity between resources in the new and the old data
centers enables minimal modifications and maximizes the reuse of
existing infrastructure configurations while providing the ability
of global resource management. Additionally, manual migration
across data centers often requires multiple confirmation check-
points, which can significantly slow down the process. Therefore,
to accelerate the new data center bring-ups, we adopt the idea of
Infrastructure as code (IaC) which is a practice to automatically
configure system dependencies and to provision local and remote
instances [41]. In this work, we propose BYTEROLLOUT, an au-
tomatic intent-based software resource deployment system that is
able to take customized infrastructure configurations as input and
actuate deployments accordingly. We also assess BYTEROLLOUT
in the following events of new data centers creations driven by
site reliability engineering (SRE) teams. The evaluation results
demonstrate that BYTEROLLOUT significantly accelerates the
data center bring-up process, saving months of human effort and
reducing costs by millions of USD simultaneously. The results
also highlight that the Infrastructure as Code practice can be
leveraged in the context of data center setups, offering benefits
such as reduced process time and minimized errors throughout
the deployment.

Index Terms—infrastructure as code, heterogeneous data cen-
ters, software maintenance, empirical software engineering

I. INTRODUCTION

Heterogeneous data centers, with a variety of compute,
memory, and network resources, are becoming increasingly
popular to address the resource requirements of time-sensitive
applications [3]. Heterogeneous infrastructures offer on-
demand self-service, broad network access, resource pooling,
and rapid elasticity [34]. Despite these benefits, such an infras-
tructure poses many challenges related to security, deployment,
and resource management [21]. As the owner of several
globally popular software applications, ByteDance has a strong
need to deploy its services and resources across various local
data centers to tackle challenges related to compliance, growth,
and disaster recovery. Consequently, seven new data centers
were built in 2023, a substantial increase compared to the
previous practice of constructing only one data center per year.

However, based on past experience, this process can be time-
consuming and error-prone – deploying new services involves
a series of transactional tasks, such as multiple registrations,
which require significant human involvement and ultimately
hinder efficiency. Moreover, dependency relationships between
different services are common and can further increase the risk
of failure in manual deployments.

To address the aforementioned issues and facilitate efficient
data center bring-ups, we explored various potential solutions
and ultimately decided to adopt the concept of Infrastruc-
ture as Code. Infrastructure as Code (IaC) is an infrastruc-
ture automation approach inspired by software development
practices, emphasizing consistent and repeatable routines for
provisioning and modifying systems and their configurations,
where changes are made to definitions and deployed through
unattended processes that incorporate thorough validation [35].
Implementing Infrastructure as Code in our scenario offers
three significant advantages: (1) utilizing source-of-truth con-
figuration files reduces human effort, as users only need to
add a single line to the placement field of the resource to
incorporate a new data center; (2) storing these configuration
files within the codebase allows for benefits such as version
control and code review; (3) the centralized nature of these
configuration enables the management of resources from a
global perspective.

In this work, our goal is to develop an automatic platform
that enables users to seamlessly copy and paste their resources
during a new data center bring-up. To achieve this goal, we
propose BYTEROLLOUT by taking advantage of the concept
of Infrastructure as Code [36] and utilize configuration files as
the definitive source to describe the intent of the deployment.
Although existing open-source tools such as Terraform [8]
are available, we chose to develop our own in-house plat-
form to better accommodate the specificity and diversity of
ByteDance’s resources while ensuring the system’s scalability.
A typical happy path for our users in this scenario involves
translating an existing online resource into a configuration
file, making minor modifications by adding the placement of
the new data center, submitting the configuration file to the
codebase for code review, triggering the pipeline engine to
initiate the deployment after the code is merged, and querying
the deployment progress. On our server side, the designed
workflow reads the content of configuration files from the
codebase, constructs them into a deployment, splits the deploy-

1

ment based on different global regions, and concurrently sends
the deployment requests to the corresponding regional resource
orchestration services. The product must also meet the require-
ments for rollback, cancellation, query dashboard, dry-run
diff confirmation, and dependency relationships. Therefore, we
design BYTEROLLOUT as an automated resource deployment
platform that provides capabilities for actuating, dry-running,
canceling, rolling back, and querying deployments.

After its completion, BYTEROLLOUT is used to deploy
resources during the bring-ups of several new data centers for
its business products, where we also had chances to evaluate
BYTEROLLOUT in terms of cost saving. In this paper, we are
highlighting the evaluation results in three data centers bring-
ups. In the first data center bring-up, BYTEROLLOUT was able
to save over 96% of human effort (measured in “developer
days”) and reduce the overall process time by 70%. During the
bring-up of the second data center, BYTEROLLOUT managed
to reduce the overall duration by 50% and the deployment
phase duration by over 60%. BYTEROLLOUT also saved over
400 “developer days” of human effort as well as millions of
dollars in total throughout the procedure. In the third data
center bring-up, BYTEROLLOUT was able to save over 500
developer days of human effort. During the last two data
centers bring-ups, BYTEROLLOUT was able to deliver the
deployment with a 100% success rate, significantly reducing
the amount of time spent on bug fixes. The evaluation results
show that BYTEROLLOUT can significantly accelerate data
center bring-ups, minimize errors throughout the process, and
ultimately save the company a substantial amount of money.
This also demonstrates that Infrastructure as Code can enhance
the data center setup process by reducing developer effort and
minimizing machine waiting time.

II. BACKGROUND

A. Heterogeneous Data Centers

Enterprises traditionally owned proprietary infrastructures
for storage and computing, but in the past decade, many
have shifted to a heterogeneous setup combining their own
resources with those from public or private cloud providers
[4]. Heterogeneous data centers use a combination of different
server types, such as those with CPUs and GPUs, to enhance
performance across various workloads, providing greater flex-
ibility and efficiency. Nowadays, due to the requirements of
political policies and concerns over local user data security,
heterogeneous data centers are also commonly used to satisfy
regulatory compliance, ensure data sovereignty, and enhance
the protection of sensitive information.

B. Pipeline Engine for Continuous Delivery and Continuous
Deployment

Continuous Delivery (CDE) is a software engineering ap-
proach in which teams continue to produce valuable software
in short cycles and ensure that the software can be reliably
released at any time [10]. Companies that practice continuous
delivery have reported great benefits, such as significant im-
provements in time to market, customer satisfaction, product

quality, release reliability, productivity and efficiency, and the
ability to build the right product through rapid experiments
[11], [29]. As best practice, continuous delivery often works
in conjunction with Continuous Integration (CI) to automate
the process of establishing the infrastructure and releasing
applications. Another concept similar to Continuous Delivery
is Continuous Deployment (CD), which refers to the automatic
and continuously deploy of the application to target envi-
ronments. What differentiates continuous deployment from
continuous delivery is a production environment (i.e., actual
customers): the goal of continuous deployment practice is
to automatically and steadily deploy every change in the
production environment [50]. Continuous deployment often
involves canary deployment for testing in the production and
multiple control plane deployments for better performance,
high availability, and high reliability.

ByteDance’s in-house pipeline engine, used to execute the
workflows for Continuous Delivery and Continuous Deploy-
ment, is called ByteCycle Pipeline [22]. It includes numerous
public atoms that can be combined to build the pipeline within
the company. These atoms offer specific, useful features for
Continuous Delivery, such as canary deployment and health
monitoring, enhancing the overall pipeline’s functionality and
reliability. In the design of BYTEROLLOUT, we leveraged this
pipeline engine to manage the overall workflow, breaking the
process into several steps, including deployment generation,
dry-run diff confirmation, and query deployment status, i.e.,
BYTEROLLOUT developed its own atoms that can be publicly
used by all pipelines. The integration of the pipeline engine
enables BYTEROLLOUT to efficiently manage its workflow
and provides an initial user interface for better interaction.

C. Resources at ByteDance

To meet the diverse needs of development activities,
ByteDance utilizes multiple categories of technologies that are
commonly used across the organization, such as RPC (Remote
Procedure Call) services, relational databases, non-relational
databases, and traffic governance systems. To better manage
the instances of these technologies across different control
planes in our system, we abstract them as resources that
BYTEROLLOUT is designed to provision. Below, we introduce
the essential resources supported by BYTEROLLOUT:

1) TCE services and clusters: Toutiao Cloud Engine (TCE)
is a platform primarily designed to manage RPC services
and provide users with fast and efficient service deployment
solutions. It focuses on service lifecycle management, in-
cluding tasks such as construction, upgrades, and rollbacks,
while striving to deliver highly available and elastic container
services. A TCE Service defines the logical concept of a
service. It encompasses elements such as the service name,
unique service identifier (PSM), code repository, image ver-
sion, startup scripts, and release permission control. It corre-
sponds to a node in the service tree and facilitates integration
with other development platforms (e.g., quota management,
alert management, and traffic governance).

2

A TCE Cluster is a deployment unit for a TCE Service
and can have its own version, instance configuration, instance
count, environment variables, and other related information.
It consists of instances that directly handle traffic, with the
cluster name serving as the smallest naming unit in the service
discovery system. Based on a TCE Service, a TCE Cluster
includes deployment-related details such as resource packages,
instance count, data center, environment variables, and more.
The TCE Cluster concept allows for request separation (similar
to implementing lanes manually); for example, a public service
in the middle layer can provide support to different apps
through different clusters. For better management, we abstract
TCE Services and Clusters as two separate types of resources.
A TCE Service may contain zero or more TCE Clusters, and
each TCE Cluster should be deployed within a single Virtual
Data Center (VDC). Given that a TCE Cluster cannot exist
independently without a TCE Service, there is an inherent
dependency relationship between TCE Clusters and Services.
TCE is the primary resource at ByteDance, and as such, we
primarily use it as the example throughout this paper.

2) Other resources: BYTEROLLOUT also supports other
resources such as TCC, RDS and Neptune. Toutiao Con-
fig Center (TCC) is a configuration management solution
provided to businesses, consisting of a platform and SDK
(Software Development Kit). It includes features such as
configuration management, version management, multi-region
and multi-environment support, permissions management, and
grayscale release. The online services can access TCC to read
configurations and incorporate these configurations into their
business logic code. BYTEROLLOUT supports this resource
and allows users to modify and deploy their changes to
the configuration contents. The Relational Database Service
(RDS) is a cloud-based service that provides access to a
relational database management system (RDBMS) such as Or-
acle, MySQL, or Microsoft SQL (Structured Query Languag)
Server. It allows users to create, manage, and scale relational
databases without the need to install or maintain the underlying
infrastructure. Relational database services typically provide
features such as automatic backups, point-in-time recovery,
and multi-zone replication for improved availability and dura-
bility. The BYTEROLLOUT feature supports this resource by
enabling users to modify and deploy changes to database
schema elements, such as table definitions and primary keys,
while preserving the integrity of the stored data. The Neptune
platform provides multidimensional and multi-scenario traffic
governance capabilities, helping users improve testing and
operation efficiency, as well as the security, stability, and
availability of services and systems. The Neptune platform
includes the following core modules: security management,
scheduling management, stability management, quota limiting,
lane control center, and administrator dashboard. BYTEROLL-
OUT supports Neptune as a resource to allow users to set up the
rate limiting, retry configurations, traffic scheduling, timeout
and security governance after the TCE services and clusters
are successfully deployed. A typical deployment sequence for
the mentioned resources begins with ensuring that RDS and

TCC are set up before deploying TCE. The deployment of
Neptune resources will commence once the TCE clusters are
prepared to receive traffic.

D. Regional Resource Orchestration Service (rROS)

At ByteDance, as the initial practise of IaC, developers
and SREs can create templates following the specifications
defined by the regional Resource Orchestration Service (rROS)
to declaratively define the required cloud resources, such as
TCE Services and Clusters, along with their interdependen-
cies. The orchestration engine then automates the creation
and configuration of these resources based on the template,
enabling fully automated cloud resource management. As a
result, users only need to maintain a single template to manage
infrastructure settings, embodying the Infrastructure as Code
paradigm. However, rROS has certain limitations. First, it was
not designed with global deployment in mind, which was
reasonable at the time when most business teams operated
primarily within the China control plane. As a result, rROS
continues to provide only regional specifications, requiring
users who need global specifications to construct them man-
ually. Second, rROS offers a user interface for interaction,
storing configuration files on its platform rather than in the
codebase. This adds complexity, as users must track their
configurations across multiple platforms, further fragmenting
configuration management. To overcome these challenges,
BYTEROLLOUT is built on top of rROS, utilizing it as the
lower-level regional interactor with resource providers.

III. THE LANDSCAPE BEFORE BYTEROLLOUT

In this section, we outline the essential steps for setting up
a new data center without using BYTEROLLOUT in Figure 1
and examine the challenges associated with this approach.

At ByteDance, the process of bringing up a data center
typically begins with preliminary research and sign-off, en-
suring that all involved teams are aligned before officially
kicking off the setup. This involves assessing requirements,
aligning with key stakeholders, and securing approvals. Once
the initial alignment is complete, the process moves to supply
chain delivery, where essential infrastructure components are
purchased and delivered. This is followed by infrastructure and
system setup, ensuring that the necessary hardware and soft-
ware foundations are in place. Subsequent steps include batch
data batch migration from other data centers and addressing
data split-brain issues, ensuring seamless data consistency
across systems. The R&D infra and system deployment are
launched simultaneously with traffic deployment to begin han-
dling workloads. Both steps are followed by a business access
evaluation to verify that the system operates as expected.

Besides, the compliance team will also ensure the compo-
nents of compliance are deployed successfully, followed by
an evaluation from the business team after the micro-services
are successfully executed to fulfill the collected business re-
quirement information in the new data center. Before full-scale
business operations, the setup undergoes quality assurance
(QA) acceptance, A/B testing, and metrics evaluation to ensure

3

Prelim
alignment

Supply
chain

delivery
System
setup

Infra
setup

Data batch
migration

Data
split-brain

R&D infra
kickoff R&D system deployment

Traffic deployment

Business
access

Business
access

Business
acceptance

QA
acceptance

AB Test &
Metrics

Normalizati
on

Business
kickoff

Business
info collect

Micro
services

Compliance
kickoff

Compliance
deployment

Business
access

Compliance
switch on

Data

System Business

Complian
ce

Infra

QA

Fig. 1: Essential steps for setting up a new data center before using BYTEROLLOUT.

system stability. Finally, the process concludes with compli-
ance switch-on, business normalization, and full operational
readiness of the data center. This process requires collaboration
among multiple teams, including system, infrastructure, com-
pliance, data, and QA teams, along with the relevant business
development teams. BYTEROLLOUT is designed to assist the
business development team with the phase of deploying micro
services because the preliminary analysis reflects that this
process is time-consuming and error-prone.

This procedure has several weaknesses, and Infrastructure
as Code can address some of them to varying degrees. First
of all, the deployment of the infrastructure platform as a
foundational software layer takes a considerable amount of
time, which poses a similar challenge for the business de-
velopment team. This issue cannot be resolved by IaC, as
the infrastructure platform, being a lower-level platform, is
not ready yet. Second, determining the scope of the resources
to be deployed and their corresponding deployment methods
can be challenging. IaC can address this issue by storing the
resources’ metadata as configuration files in the codebase,
making them easily accessible. Third, data migration is time-
consuming due to the need for compliance checks, which add
an extra processing time to the process. The batch deployment
of services and related resources can take a long time, as
the process is prone to failure if dependent resources are not
ready. However, BYTEROLLOUT can address this issue by
providing a dependency-based deployment approach and au-
tomatically retrying the deployment if it fails. Moreover, since
BYTEROLLOUT relies on configuration files as the source of

truth and requires minimal modifications during deployment,
the success rate can be significantly improved. This, in turn,
reduces the time spent on debugging and metric evaluation
phases. Considering that bug fixes involve collaboration across
multiple teams, which increases communication costs, a higher
deployment success rate can save more time than estimated.
Finally, once the services are successfully started, the SRE
teams need to increase the capacity of the clusters, which
also takes time. With BYTEROLLOUT, this process can be
automated, making it more efficient and faster.

IV. THE DESIGN OF BYTEROLLOUT

We designed BYTEROLLOUT to take a configuration file as
the source of truth (SoT), containing all the necessary infor-
mation for deploying resources based on the intended speci-
fications. Users can begin by importing online resources into
SoT files, a feature provided by BYTEROLLOUT. BYTEROLL-
OUT consists of four main components highlighted in this
paper: the pipeline, the Generator Service, the Deployment
Service, and the Global ByteDance Resource Orchestration
Service (gROS), as shown in Figure 2. One core concept in
BYTEROLLOUT is deployment. A deployment consists of a
list of resources that are scheduled for deployment in the
intended request, along with additional information such as
namespace and organization. To better support new data center
bring-up scenarios that may require resources from multiple
deployments, BYTEROLLOUT allows users to submit a batch
of deployments in a single request.

4

BYTEROLLOUT is able to receive configuration files
through an input request from three resources: Software De-
velopment Kit (SDK), Command Line Interface (CLI), and
open APIs. The BYTEROLLOUT SDK and open APIs enable
users to call the service directly from their code, while the
CLI provides a user-friendly interface for developers to input
commands and trigger the deployment process. Through an
input service, users can trigger a BYTEROLLOUT pipeline
consisting of a BYTEROLLOUT Register Atom, a BYTEROLL-
OUT Actuation Atom, and a BYTEROLLOUT Query Atom to
initiate the deployment process. The BYTEROLLOUT Register
Atom collects user input and sends the information to the
Generator Service to create deployment and resource speci-
fications. It also highlights the differences between the new
and old specifications, allowing users to review and confirm
the intended rollout. Once users approve the deployment,
the BYTEROLLOUT Actuation Atom forwards the request to
the Deployment Service, which manages database read/write
operations, request throttling, and sequentially triggers each
deployment. Next, the Global ROS processes the deployment
by distributing resources based on their placement and for-
warding them to the Regional ROS (rROS). The rROS is
responsible for dependency resolution, scheduling, throttling,
rollback, and the actual execution of user specifications. The
BYTEROLLOUT Query Atom collects the status updates and
display the ongoing tickets during this process. The compo-
nents of BYTEROLLOUT generator and Deployment Services
use an RPC framework named Kitex [54]. We will introduce
the design of these components in a more detailed way in the
following subsections.

A. SoT File of BYTEROLLOUT

The SoT (source of truth) file of BYTEROLLOUT to describe
the resource deployment intent is designed in YAML format,
while the fields are defined in Protobuf [52]. The benefits
of using Protobuf include efficient serialization, scalability,
and cross-platform compatibility, while also aligning with the
coding practices of the teams.

Each resource is assigned an SoT file and consists of two
main components: “metadata” and “spec”. The metadata field
defines the resource’s logical ID, which must be globally
unique within the deployment. It also includes additional
information such as the resource type and the logical IDs
of any dependent resources. The spec field consists of two
main parts: “template” and “regionalResources”. The template
field contains global information about the resource that is
shared across all regional resources. This may include details
such as the host type, required CPU count, code repository
version, and upgrade strategy. The regionalResources field
specifies the configuration for each regional resource in the
field of “propertyOverrides”, along with its primary identifier
to uniquely distinguish it.

An example of the SoT configuration file is shown in
Listing 1. It defines a TCE Cluster resource with two regional
clusters located in the SG1 and Maliva data centers. Its
metadata field contains the resource’s logical ID, type, and

the logical IDs of its dependent resources. The resource has
two regional resources that share common attributes such as
host type, required GPU count, image version, and upgrade
strategy. However, they also have region-specific attributes.
For example, the SG1 cluster uses a more advanced code
version, “1.0.0.48”, compared to “1.0.0.47” in Maliva while
the Maliva cluster requires a larger capacity, with a CPU
count of 2 and a memory count of 3. When users need to
modify a cluster, changes intended for a specific regional
cluster should be made in the propertyOverrides section of
the SoT file, such as updating the CPU count from “2” to “4”.
Conversely, changes that apply to all clusters should be made
in the template section, such as renaming the cluster from
“default” to “stress”. Once users have their SoT files for the
resources ready, approved, and merged into the codebase, they
can submit an input request. This request should include the
locations of these files in the repository, as well as deployment
information, such as the deployment name.

Listing 1: SoT file example of a TCE Cluster resource
metadata:
logicalId: demo.kitex.xianhao.tce.cluster
type: TCE_CLUSTER
dependencies:
- demo.kitex.xianhao.tce.service

spec:
regionalResources:
VGeo-RoW|Singapore-Central|sg1:
primaryIdentifier:
Meta:
Id: "4363735"

propertyOverrides:
Runtime:
RepoInfo:
- Name: toutiao/demo/xianhao_kitex
ScmRepoId: "314438"
Version: 1.0.0.48

VGeo-RoW|US-East|maliva:
primaryIdentifier:
Meta:
Id: "2706443"

propertyOverrides:
Resource:
Cpu: 2
Mem: 3

template:
Meta:
HostType: docker
Name: default
Service: "1611598"
ServiceEnv: prod
ServicePriority: normal
ServicePsm: demo.kitex.xianhao

Resource:
Cpu: 1
Gpu: 0
Mem: 2
Package: ""
ResourceType: custom
Socket: 0

Runtime:
AmsTag: ""
CanaryWeight: 10

5

ByteRollout
Register Atom

ByteRollout
Actuation Atom

ByteRollout
Query Atom

Pipeline

SoT
files

Generator
Service

new spec
staging DB

Deployment
Service

new spec
final DB

ByteRollout

Global ROS Regional
ROS

ROS

1. submit input

2. generate spec

3. save

4. display diff

5. confirm diff

6. actuate

7. load 8. save

9. apply deployment

10. actuation finished

11
. t

ra
ck

 s
ta

tu
s

Fig. 2: Brief design of BYTEROLLOUT.

HostuniqNum: 0
ImageTag: tce
ImageVersion: 1.0.0.74
IsHostuniq: false
IsStateful: false
MaxFailureFraction: 0
RepoInfo:
- Name: toutiao/demo/xianhao_kitex
ScmRepoId: "314438"
Version: 1.0.0.47

ShardNum: 0
ShardParams: {}
Weight: 10

Upgrade:
CanarySurgePercent: 100
IsStandaloneRelease: false
MinReadySecond: 10
StandaloneReason: ""
SurgePercent: 25
TerminationSecond: 30
UpdateAction: restart
UpdateMode: delete_first
UpdateStrategy: RollingUpdate

B. BYTEROLLOUT Pipeline Atoms

BYTEROLLOUT utilizes ByteDance’s pipelines as the user
interface to display and track the status of the deployment
workflow. The pipeline consists of a set of atoms, where each
atom is a unit service that performs a group of related tasks.
This structure enables the pipeline to integrate seamlessly with
other platforms [22]. BYTEROLLOUT provides three atoms
that are highlighted in this paper: Register Atom, Actuation
Atom, and Query Atom. The BYTEROLLOUT Register Atom
interacts with the Generator Service to create deployments
based on the received inputs and displays the differences

between the new deployment and the previous deployment
with the same deployment name. The pipeline will be paused
at the Register Atom phase until users approve the potential
deployment. Once users confirm that the displayed differences
meet expectations, the Actuation Atom is triggered, calling
the Deployment Service to apply the deployment previously
created by the Deployment Service. The actuation atom can
also receive deployment sequence information as input, en-
abling the deployment of resources to follow a specified order
based on resource types or regions. After the deployment
is successfully initiated, the BYTEROLLOUT Query Atom
continuously performs query operations until the deployment
is marked as successful, failed, or canceled. Additionally, the
atom displays ongoing platform tickets, allowing users to gain
a more detailed understanding of the deployment progress.

C. BYTEROLLOUT Services

In this paper, we focus on two key services in BYTEROLL-
OUT: the Generator Service and the Deployment Service.
Additionally, BYTEROLLOUT includes other services, such
as the Input Service, which triggers the pipeline, and the
Entry Service, which manages HTTP calls. The database we
select for BYTEROLLOUT is an internally developed database
based on MongoDB [5]. MongoDB is chosen as the preferred
database solution due to its inherent flexibility and efficient
querying capabilities. In particular, the absence of rigid re-
lationships among files enables each file to be treated as an
independent record within the database.

The BYTEROLLOUT Generator Service is responsible for
parsing the SoT file contents from the specified repository
and path, translating each YAML file into its corresponding
resource, and assembling the resources into a deployment.

6

The Generator Service offers three key features. First, in the
case of a new data center bring-up, numerous resources are
involved, each with its own SoT file, e.g., a typical new
data center bring-up can involve thousands of resources and
the number of SoT files can be ten times the number of
resources. As a result, the Generator Service must read a
large number of files from the codebase, which can create
a bottleneck for the version control system. This process
can slow down the overall deployment, and since SoT files
often require frequent minor updates, the issue can become
even more pronounced. To mitigate this issue, the Generator
Service caches the required SoT files for the data center bring-
up process and applies incremental updates from the version
control system only when necessary. This reduces the load
on the version control system and improves efficiency. Next,
certain operations are repeated across all SoT files during
a data center bring-up. For example, when adding a new
data center, every SoT file must include a new key in the
“regionalResources” field to reference the new data center.
Similarly, once all TCE clusters are ready, SRE teams may
need to increase capacity, requiring simultaneous updates to
the corresponding CPU and memory counts across all relevant
files. Therefore, the Generator Service provides a “batch-edit”
operation, enabling users to apply the same change across
multiple specified SoT files with a single request, streamlining
the update process.

Moreover, SoT configuration files can be complex and con-
tain a significant amount of information that may be irrelevant
to certain users. For example, users from the capacity manage-
ment team may only be concerned with CPU count and mem-
ory count, while users from the daily development team may
primarily focus on the code version. As a result, there is a need
to simplify the SoT file and allow for customized configuration
views tailored to specific user needs. To address this issue, the
Generator Service supports customized generators as plugins
alongside the default generators. These customized generators,
which can be developed by other customer teams, allow users
to translate their own customized SoT files into the standard
resource format defined by Protobuf, efficiently improving
the readability for users. After successfully generating the
deployment with all resources and making it ready for review,
the Generator Service stores it in a staging database.

After the user confirms the potential deployment, the
BYTEROLLOUT Deployment Service receives the actuation
request and loads the deployment from the staging database.
It then applies the deployment to gROS and tracks its status.
Additionally, the service interacts with the final database to
store the deployment and its related historical information.
Furthermore, it enables users to cancel or roll back an ongoing
deployment through gROS.

V. EVALUATION

In this section, we discuss how BYTEROLLOUT was utilized
in the bring-up of three industrial new data centers and analyze
the cost savings achieved through the procedures. We did

not apply a similar IaC technique in these data center bring-
ups due to cost concerns. As a result, we can only compare
BYTEROLLOUT with the tools that were used in previous data
center bring-ups.

A. Evaluation Process

From January 2024 to December 2024, BYTEROLLOUT was
successfully used in the bring-up of three new data centers.
However, due to company policies, some statistics related to
the process cannot be disclosed in this paper, and the real-
world locations of these data centers cannot be referenced.
We summarized the details of each data center bring-up in
Table I. To measure the effectiveness of BYTEROLLOUT,
we calculated the difference in developer days spent on
bringing up a data center using BYTEROLLOUT compared to
the previous experience of bringing up a similar-sized data
center by the same team. With the saved developer days
and reduced machine waiting time, we can also estimate the
total cost savings in dollars, providing a clearer picture of
BYTEROLLOUT’s efficiency and impact.

The first data center bring-up using BYTEROLLOUT was
carried out by the global payment team. The primary resource
involved in this evaluation was the Relational Database Service
(RDS). As part of this evaluation, we also conducted a deploy-
ment rehearsal involving approximately 20 TCE services with
their respective clusters. The second BYTEROLLOUT evalua-
tion was for Product B, where it was used to set up a new data
center in Europe. BYTEROLLOUT supported the deployment
of over 4000 TCE Cluster resources in this process. After the
initial deployment, the team used BYTEROLLOUT to increase
the capacity of around 3000 TCE Clusters. Additionally, over
4000 traffic governance Neptune resources were migrated
through our system. The third data center bring-up evaluation
was operated by Product C team. A number of different
categories of resources were supported by BYTEROLLOUT
during the process, including TCE, RDS, Redis [9], and
FaaS [51]. Over 500 RDS databases, 70000 RDS tables,
and 3900 TCE Clusters were successfully brought up though
BYTEROLLOUT.

B. Results

We first compared the bring-up progress of data center A,
which adopted BYTEROLLOUT, with a similarly sized data
center A*, which did not. The results showed that BYTEROLL-
OUT significantly reduced the developer days involved in
the process from over 40 to less than 1.5. Additionally, the
deployment time span was reduced from over 2 months to just
12 business days. We further evaluated how BYTEROLLOUT
contributed to these cost savings and identified two key factors:
(1) automated deployment with SoT Files – BYTEROLLOUT
replaced the previous manual triggering and categorization
steps with automated deployment using SoT files, signifi-
cantly reducing human effort, (2) automated ticket generation
– BYTEROLLOUT streamlined the process by automatically
generating deployment review tickets, eliminating the need for
manual approval and expediting workflow execution.

7

TABLE I: Data center bring-up statistics.

Data Center Team Resources Count Expand Capacity?

A Product A RDS, TCE 200 RDS databases, 9000+ RDS tables
20 TCE Services No

B Product B TCE, Neptune 4000+ TCE Clusters
4400+ Neptune resources Yes

C Product C RDS, TCE, Redis, FaaS

500+ RDS databases, 70000+ RDS tables
∼4000 TCE Clusters
500+ Redis
1200 FaaS

Yes

From the evaluation of data center B, operated by Product
B, we found that BYTEROLLOUT significantly accelerated
the bring-up process, reducing the overall timespan from 6
months to 3 months. Specifically, BYTEROLLOUT shortened
the deployment phase from 2.5 months to 1 month, saving
the company tens of millions of dollars. The TCE deployment
period was reduced from 4 weeks to 3 weeks, with the success
rate increasing from 60% to 73% (with the remaining failures
unrelated to infrastructure). In total, BYTEROLLOUT saved up
to 312 developer days for business teams during deployment
and approximately 30 SRE team days in the TCE scale-up
phase, achieving an accuracy rate of over 95%. Additionally,
it took only 53 minutes to scale up 3,000 clusters, around
90 minutes to deploy 4,000 TCE clusters, and less than 2
hours to actuate over 4000 Neptune resources. We analyzed the
key factors behind BYTEROLLOUT ’s cost-saving effectiveness
and identified two primary reasons. First, its high deployment
success rate significantly reduces the time required for ex-
amination and debugging. Second, the automatic retry feature
minimizes manual intervention and accelerates the overall
deployment process, further reducing operational duration.

In the final evaluation of the data center C bring-up,
BYTEROLLOUT successfully saved over 572 developer days
in total. Among the various resources involved, the deploy-
ment of RDS tables contributed the most significant savings,
reducing over 400 developer days, while the deployment of
TCE clusters ranked second, saving approximately 90 devel-
oper days. This further demonstrates that BYTEROLLOUT can
lower costs during data center deployments by automating
the process and minimizing the failure rate. Considering that
BYTEROLLOUT will support more resources in the future and
experience fewer bugs as the system matures, it will continue
to contribute to cost savings for data center bring-ups. This is
due to the reusable nature of Infrastructure as Code.

VI. DISCUSSION

In this section, we discuss the challenges encountered and
lessons learned during the process of building BYTEROLLOUT
and achieving its standards to meet user requirements. We also
discuss the forthcoming challenges that need to be addressed
in the system and evolution direction in the future.

A. Lesson Learned

The first lesson we learned was how to address the require-
ment for handling a high concurrency request rate within a
short period during the data center bring-up process. There-
fore, BYTEROLLOUT enhances its’s scalability in two key

ways. The initial approach involves storing the SoT configu-
ration files in cache and performing only incremental updates
through the version control system after a deployment request
is submitted. This solution significantly reduces the time re-
quired to read the SoT file contents from the remote codebase,
thereby shortening the overall deployment generation duration.
The second approach involves replacing the synchronous mode
with an asynchronous one, allowing users to proceed without
waiting for a response while the deployment is still in progress.
This reduces the likelihood of timeout failures, especially
considering the already lengthy call chain. To enhance user
support in monitoring deployment status, BYTEROLLOUT
implements a status tracker and provides a query webpage
for users to access real-time updates.

The second lesson we learned during the implementation
of BYTEROLLOUT is the flexibility and readability of the
SoT file as the system input. The SoT files are typically long
and complex, as they contain all the necessary information
to define a resource. This makes it challenging for a single
user to fully comprehend all of the contents. Additionally,
the centralized team may only be concerned with specific
attributes of a resource, such as capacity or placement. As
a result, users may require a customized version of the SoT
file to better manage resources within their area of expertise.
This necessitates BYTEROLLOUT to support multiple input
formats. To address this, BYTEROLLOUT allows customized
generators as plugins to its Generator Service, enabling the
translation of customized SoT file formats into a predefined
standard resource description format.

Another lesson we learned during the design of BYTEROLL-
OUT is how to overcome the security issue. BYTEROLLOUT
faces both the issues of authorization and authentication: the
system must identify the input user and also decide what
permission the user should have. Besides, an individual user
may lack the necessary permissions to deploy all resources
during the data center bring-up process. To address this,
BYTEROLLOUT accepts both the user’s JSON Web Token
and the service account token, allowing teams to grant all
necessary permissions to their service account. Other lessons
we learned include the input diversity requirement, the trade-
off between Protobuf and JSON, and the appropriate selection
of databases.

B. Forthcoming Challenges and Evolution Direction
One challenge that needs to be addressed is how to de-

tect errors and provide useful suggestions when editing SoT
files, as it is difficult to identify errors while modifying

8

the configuration file. Currently, the integrated development
environment (IDE) does not support error detection when
editing BYTEROLLOUT SoT files. Therefore, future plugins
could be developed to detect typos and incorrect inputs within
the configuration files. This also introduces another challenge:
locating bugs in the configuration file and providing automatic
fix suggestions. This issue could potentially be resolved by
integrating artificial intelligence tools to assist in the editing
and debugging process. Given the high reusability of SoT
configurations, one potential direction for evolution is to ex-
tend the use of BYTEROLLOUT to daily resource deployments
(Continuous Deployment), rather than limiting it solely to new
data center bring-ups. One major benefit is that all changes will
be reflected in the SoT files within the codebase, allowing for
code reviews from a security perspective and making it easier
to implement version control. However, this approach can also
introduce some conflicts. One major issue is the consistency
of the SoT file. Since there are multiple entry points for
making changes to deployments, such as the resource provider
platform or the pipeline atom, the SoT file may not always be
up-to-date. As a result, when there is a drift, applying the
deployment through the SoT files could lead to consistency
issues. To address this issue, we need to consolidate the entry
points and ensure that all resource changes are reflected in the
SoT files before they can take effect.

Additionally, one benefit of converting infrastructure con-
figuration into code is that it becomes easier for AI agents
utilizing large language model (LLM) technology to parse and
understand the information. Therefore, adopting infrastructure
as code facilitates the potential for AI agents to manage all
resources efficiently. This enables users, such as software
developers and SREs, to interact directly with the AI agent
by communicating prompts about the desired infrastructure
changes, allowing the AI agent to handle the complex con-
figuration tasks. This also enables developer efficiency teams
to build AI agents that monitor metrics of the resources
and make adjustments accordingly. Apart from that, translat-
ing the configuration file into code enables users to edit it
alongside the business code within an integrated development
environment. This approach allows users to manage both
infrastructure and business code in a synchronized and unified
manner. Other challenges include the situation where a single
resource is applied simultaneously in different deployments,
which necessitates locking the resource during an ongoing
deployment to prevent conflicts. To apply BYTEROLLOUT
in the daily software engineering deployment cycle, we also
need to develop a more comprehensive user interface that
allows users to register deployments by specifying resource
identifiers. Additionally, the system should integrate the code
review and the status query process. User feedback also
reflects a feature request to provide options to fast rollback.

VII. THREATS TO VALIDITY

A. Internal Validity

To guard internal validity, we reported the evaluation of
BYTEROLLOUT in three different data center bring-ups and

all the three evaluations include a large amount of resources
in different categories. However, we are unable to compare
the effectiveness of using BYTEROLLOUT versus not using
it in a single data center bring-up, as doing so would result
in significant waste. Therefore, we compare the evaluation
results with the same team’s previous experience in data center
bring-ups to minimize the impact of this comparison. Also,
we collected the data from three events of new data center
bring-ups to avoid contingency. Our observed results may have
been influenced by the load experienced in the build server
at the time. However, we consider this potential impact to
be minimal, and it may apply equally to experiences with or
without BYTEROLLOUT. Another factor that may influence
the findings is the logical inferences and conclusions drawn
from the research results. Besides, although we strived to
minimize differences between the compared processes aside
from the adoption of BYTEROLLOUT, certain variables (e.g.,
build server load) could not be fully controlled.

B. External Validity

To increase external validity, we selected all resources
that were involved in the data center bring-up supported
by BYTEROLLOUT. The resources include different types of
the software engineering technologies of services, clusters,
database and cache with different programming languages.
Our observations may slightly vary for separate software
projects, but our goal was to derive general observations for a
real-world population of software projects. Given that the data
center bring-up events we collected were all from industrial
areas, the results may not be always applicable to some smaller
open-source projects.

C. Construct Validity

A threat to the validity of the construct is whether we
studied software projects that are similar to those in the real
world. However, we have selected the maximum diversity of
resources across different categories and service sizes to ensure
a comprehensive evaluation. Additionally, the results may be
influenced by differences in team cultures and collaboration
patterns. However, given the scale of the data centers and
the fact that the evaluated data center bring-ups involve teams
from different regions and time zones, the benefits of adopting
Infrastructure as Code remain substantial and well-supported.

VIII. RELATED WORK

A. Infrastructure as Code

Infrastructure as Code (IaC) has been popular as automation
technologies [36]. Four topics studied in IaC-related publica-
tions are identified by existing work [41]: (i) framework/tool
for Infrastructure as Code; (ii) use of Infrastructure as Code;
(iii) empirical study related to Infrastructure as Code; and
(iv) testing in Infrastructure as Code. Guerriero et al. explore
the adoption, support and challenges of IaC and highlight the
need for more research in the field: The support provided by
currently available tools is still limited, and developers feel
the need for novel techniques to test and maintain IaC code

9

[19]. Other existing work focuses on helping practitioners
improve the quality of Infrastructure as Code (IaC) scripts
by identifying development activities related to defective IaC
scripts [40] and avoiding insecure coding practices while
developing IaC scripts through an empirical study of security
smells in IaC scripts [42].

Rong et al. proposed an approach named Open Infrastruc-
ture as Code (OpenIaC), which is an attempt to provide a com-
mon open forum to integrate and build on advances in cloud
computing and blockchain to address the needs of modern in-
formation architectures [44]. Also, existing work finds that IaC
becomes more popular in Stack Overflow and the related topics
include server configuration, policy configuration, networking,
deployment pipelines, variable management, templating, and
file management [6]. Other research focuses on assisting with
the editing of configuration files in the field of Infrastructure
as Code (IaC), aiming to improve accuracy, reduce errors, and
enhance usability [28]. Palma et al. aimed at assessing the role
of product and process metrics when predicting defective IaC
scripts [13] while other work also working on ensuring the
quality of IaC [7], [30], [38], [39].

Our BYTEROLLOUT platform is designed based on the
unique context of developing environment at ByteDance and
it also has many differences between what is Terraform, e.g.,
we allow a pipeline engine to drive our deployment workflow
and accepts customized generators as plugins to contribute to
our Generator Service. We also propose the first evaluation
on how Infrastructure as Code can accelerate the data center
bring-up events and we compare the effects in three real-world
data center bring-up practices.

B. Approaches to Improve Continuous Deployment

Researchers worked to explain why Continuous Delivery
(CDE) and Continuous Deployment (CD) are adopted and
report the huge benefits and challenges involved [10]. Chen
et al. presented strategies to help overcome the challenges of
CDE [11] and Virmani et al. also explained how to bridge
the gap of CDE to promote the adoption [53]. Savor et
al. explained how CD has been achieved at Facebook [48].
Existing work [12] also examined the challenges faced by
organizations when adopting CD, as well as strategies to
mitigate these challenges. Yang et al. explored two types of
workflow in CD including Docker Hub auto-builds Workflows
and CI-based Workflows [58]. Other works also explained the
difference between CD and CDE and their own approaches
and challenges [49], [50].

As a related effort to improve Continuous Deployment,
Gallaba et al. explore ways to improve the robustness and ef-
ficiency of CD processes [17]. Also, existing work aims to aid
product teams in improving their deployment process through
characterizing experimentation in CD [27]. Researchers also
present a machine learning-based framework that systemati-
cally improves pipeline performance through predictive mod-
eling to optimize the CD pipelines [14]. Rahman and Williams
took advantage of two text mining techniques to extract text

features from IaC scripts to characterize defective IaC scripts
in Continuous Deployment [43].

Another related practice is Continuous Integration (CI),
which typically precedes Continuous Deployment (CD). CI
often includes steps such as code compilation, unit testing,
integration testing, and testing in an offline environment. To
accelerate CI, existing work aim at speeding up its feedback
by prioritizing its tasks [15], [16], [31], [33], [37], [47], [60],
performing test selection [16], [18], [20], [32], [45], [46], [55],
[56], [57], [59], and reducing the total number of builds that
get executed [1], [2], [23], [25], [26], [24].

Our work adopts the concept of Infrastructure as Code,
which is widely used in Continuous Deployment. We ap-
plied this approach to data center bring-ups and implemented
BYTEROLLOUT. The evaluation results show that Infrastruc-
ture as Code can save hundreds of developer day and months
of machine idle time when building a new data center and thus
save millions of dollars for the company. In future work, we
plan to expand BYTEROLLOUT as a platform to support daily
resource deployments as part of Continuous Deployment and
apply Large Language Model tools to edit and debug the IaC
configuration scripts.

IX. CONCLUSIONS AND FUTURE WORK

In this article, we introduced the process of bringing up
a new data center with various categories of resources in
a large tech company like ByteDance. We also included
the challenges and existing problems that can cause human
effort waste throughout the process. We also introduced our
design of BYTEROLLOUT, a platform to deploy resources
to a new data center using the concept of Infrastructure as
Code. We evaluated BYTEROLLOUT with three data center
bring-up events to understand how Infrastructure as Code can
accelerate the entire process. We compared the time span and
developer days cost for data center bring-ups that adopted
BYTEROLLOUT against those that did not, based on three
separate evaluation cases. We found that Infrastructure as Code
can accelerate the data center bring-up process significantly.
Our findings can shed light on the design of future tools
to address the challenges. Finally, we discuss what we had
learned during the design of BYTEROLLOUT and the gap
between the initial design and how developers would like to
use the tool. We also provided a set of challenges or pain points
that may require future work to address and emphasized the
evolution direction to use BYTEROLLOUT as a Continuous
Deployment platform. We lay out plans to simplify the edit
and debug process of the configuration files to enhance their
flexibility and practicality using LLM models. In the future, we
will work on using BYTEROLLOUT to complement the current
existing Continuous Deployment platform to take advantage of
the benefits of code review and version control. We will also
work on a more comprehensive webpage to serve as the user
interface for better user experience.

10

REFERENCES

[1] R. Abdalkareem, S. Mujahid, and E. Shihab. A machine learning ap-
proach to improve the detection of ci skip commits. IEEE Transactions
on Software Engineering (TSE), 2020.

[2] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling. Which commits
can be ci skipped? IEEE Transactions on Software Engineering, 2019.

[3] M. Arif, M. M. Rafique, S.-H. Lim, and Z. Malik. Infrastructure-aware
tensorflow for heterogeneous datacenters. In 2020 28th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 1–8. IEEE, 2020.

[4] W.-H. Bai, J.-Q. Xi, J.-X. Zhu, and S.-W. Huang. Performance analysis
of heterogeneous data centers in cloud computing using a complex queu-
ing model. Mathematical Problems in Engineering, 2015(1):980945,
2015.

[5] K. Banker, D. Garrett, P. Bakkum, and S. Verch. MongoDB in action:
covers MongoDB version 3.0. Simon and Schuster, 2016.

[6] M. Begoug, N. Bessghaier, A. Ouni, E. A. AlOmar, and M. W. Mkaouer.
What do infrastructure-as-code practitioners discuss: An empirical study
on stack overflow. In 2023 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 1–
12. IEEE, 2023.

[7] M. Begoug, M. Chouchen, and A. Ouni. Terrametrics: an open
source tool for infrastructure-as-code (iac) quality metrics in terraform.
In Proceedings of the 32nd IEEE/ACM International Conference on
Program Comprehension, pages 450–454, 2024.

[8] Y. Brikman. Terraform: up and running: writing infrastructure as code.
” O’Reilly Media, Inc.”, 2022.

[9] J. Carlson. Redis in action. Simon and Schuster, 2013.
[10] L. Chen. Continuous delivery: Huge benefits, but challenges too. IEEE

software, 32(2):50–54, 2015.
[11] L. Chen. Continuous delivery: overcoming adoption challenges. Journal

of Systems and Software, 128:72–86, 2017.
[12] G. G. Claps, R. B. Svensson, and A. Aurum. On the journey to

continuous deployment: Technical and social challenges along the way.
Information and Software technology, 57:21–31, 2015.

[13] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri. Within-
project defect prediction of infrastructure-as-code using product and pro-
cess metrics. IEEE Transactions on Software Engineering, 48(6):2086–
2104, 2021.

[14] S. Dileepkumar and J. Mathew. Optimizing continuous integration and
continuous deployment pipelines with machine learning: Enhancing per-
formance and predicting failures. Advances in Science and Technology
Research Journal, 19(3):108–120, 2025.

[15] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioriti-
zation: A family of empirical studies. IEEE transactions on software
engineering, 28(2):159–182, 2002.

[16] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 235–245, 2014.

[17] K. Gallaba. Improving the robustness and efficiency of continuous
integration and deployment. In 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 619–623. IEEE,
2019.

[18] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, pages 211–
222, 2015.

[19] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba. Adoption,
support, and challenges of infrastructure-as-code: Insights from industry.
In 2019 IEEE international conference on software maintenance and
evolution (ICSME), pages 580–589. IEEE, 2019.

[20] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of
testing less without sacrificing quality. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages
483–493. IEEE, 2015.

[21] J. Hwang, S. Zeng, F. y Wu, and T. Wood. Benefits and challenges of
managing heterogeneous data centers. In 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), pages 1060–
1065. IEEE, 2013.

[22] X. Jin, Y. Feng, C. Wang, Y. Liu, Y. Hu, Y. Gao, K. Xia, and
L. Guo. Pipelineascode: A ci/cd workflow management system through
configuration files at bytedance. In 2024 IEEE International Conference

on Software Analysis, Evolution and Reengineering (SANER), pages
1011–1022. IEEE, 2024.

[23] X. Jin and F. Servant. A cost-efficient approach to building in continuous
integration. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), pages 13–25. IEEE, 2020.

[24] X. Jin and F. Servant. What helped, and what did not? An Evaluation of
the Strategies to Improve Continuous Integration, Mar. 2020. Available
at https://doi.org/10.5281/zenodo.4372963.

[25] X. Jin and F. Servant. Which builds are really safe to skip? maximizing
failure observation for build selection in continuous integration. Journal
of Systems and Software, 188:111292, 2022.

[26] X. Jin and F. Servant. Hybridcisave: A combined build and test selection
approach in continuous integration. ACM Transactions on Software
Engineering and Methodology, 32(4):1–39, 2023.

[27] K. Kevic, B. Murphy, L. Williams, and J. Beckmann. Characterizing
experimentation in continuous deployment: a case study on bing. In 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 123–132.
IEEE, 2017.

[28] P. T. Kon, J. Liu, Y. Qiu, W. Fan, T. He, L. Lin, H. Zhang, O. M.
Park, G. S. Elengikal, Y. Kang, et al. Iac-eval: A code generation
benchmark for cloud infrastructure-as-code programs. Advances in
Neural Information Processing Systems, 37:134488–134506, 2024.

[29] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mäntylä, and T. Männistö. The highways and country roads to contin-
uous deployment. Ieee software, 32(2):64–72, 2015.

[30] E. Low, C. Cheh, and B. Chen. Repairing infrastructure-as-code using
large language models. In 2024 IEEE Secure Development Conference
(SecDev), pages 20–27. IEEE, 2024.

[31] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta. Assessing test case
prioritization on real faults and mutants. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
240–251. IEEE, 2018.

[32] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. Predictive test
selection. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pages 91–
100. IEEE, 2019.

[33] D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization for
continuous regression testing: An industrial case study. In 2013 IEEE
International Conference on Software Maintenance, pages 540–543.
IEEE, 2013.

[34] P. Mell, T. Grance, et al. The nist definition of cloud computing. 2011.
[35] K. Morris. Infrastructure as code: managing servers in the cloud. ”

O’Reilly Media, Inc.”, 2016.
[36] K. Morris. Infrastructure as code. O’Reilly Media, 2020.
[37] S. Mostafa, X. Wang, and T. Xie. Perfranker: prioritization of perfor-

mance regression tests for collection-intensive software. In Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 23–34, 2017.

[38] E. Ntentos, N. E. Lueger, G. Simhandl, U. Zdun, S. Schneider,
R. Scandariato, and N. E. Dı́az Ferreyra. On the understandability
of design-level security practices in infrastructure-as-code scripts and
deployment architectures. ACM Transactions on Software Engineering
and Methodology, 34(1):1–37, 2025.

[39] R. Opdebeeck, A. Zerouali, and C. De Roover. Control and data flow in
security smell detection for infrastructure as code: Is it worth the effort?
In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), pages 534–545. IEEE, 2023.

[40] A. Rahman, E. Farhana, and L. Williams. The ‘as code’activities:
development anti-patterns for infrastructure as code. Empirical Software
Engineering, 25:3430–3467, 2020.

[41] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams. A systematic
mapping study of infrastructure as code research. Information and
Software Technology, 108:65–77, 2019.

[42] A. Rahman, C. Parnin, and L. Williams. The seven sins: Security smells
in infrastructure as code scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 164–175. IEEE,
2019.

[43] A. Rahman and L. Williams. Characterizing defective configuration
scripts used for continuous deployment. In 2018 IEEE 11th International
conference on software testing, verification and validation (ICST), pages
34–45. IEEE, 2018.

11

[44] C. Rong, J. Geng, T. J. Hacker, H. Bryhni, and M. G. Jaatun. Openiac:
open infrastructure as code-the network is my computer. Journal of
Cloud Computing, 11(1):12, 2022.

[45] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on software engineering, 22(8):529–551,
1996.

[46] G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(2):173–210, 1997.

[47] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Transactions on software engineering,
27(10):929–948, 2001.

[48] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm.
Continuous deployment at facebook and oanda. In Proceedings of
the 38th International Conference on software engineering companion,
pages 21–30, 2016.

[49] M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu. Beyond continuous de-
livery: an empirical investigation of continuous deployment challenges.
In 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 111–120. IEEE, 2017.

[50] M. Shahin, M. A. Babar, and L. Zhu. Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges
and practices. IEEE access, 5:3909–3943, 2017.

[51] M. Shahrad, J. Balkind, and D. Wentzlaff. Architectural implications
of function-as-a-service computing. In Proceedings of the 52nd annual
IEEE/ACM international symposium on microarchitecture, pages 1063–
1075, 2019.

[52] K. Varda. Protocol buffers: Google’s data interchange format. Google
Open Source Blog, Available at least as early as Jul, 72:23, 2008.

[53] M. Virmani. Understanding devops & bridging the gap from continuous
integration to continuous delivery. In Fifth international conference on
the innovative computing technology (intech 2015), pages 78–82. IEEE,
2015.

[54] Y. Wen, G. Cheng, S. Deng, and J. Yin. Characterizing and synthesizing
the workflow structure of microservices in bytedance cloud. Journal of
Software: Evolution and Process, 34(8):e2467, 2022.

[55] S. Yoo and M. Harman. Pareto efficient multi-objective test case
selection. In Proceedings of the 2007 international symposium on
Software testing and analysis, pages 140–150. ACM, 2007.

[56] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, 2012.

[57] L. Zhang. Hybrid regression test selection. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 199–
209. IEEE, 2018.

[58] Y. Zhang, B. Vasilescu, H. Wang, and V. Filkov. One size does not fit all:
an empirical study of containerized continuous deployment workflows.
In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 295–306, 2018.

[59] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric. A framework for
checking regression test selection tools. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 430–
441. IEEE, 2019.

[60] Y. Zhu, E. Shihab, and P. C. Rigby. Test re-prioritization in continuous
testing environments. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 69–79. IEEE,
2018.

12

