PIPELINEASCODE: A CI/CD Workflow
Management System through Configuration Files at
ByteDance

Xianhao Jin*, Yifei Feng*, Chen Wang*, Yang Liut, Yongning Hu*, Yufei Gao*, Kun Xia*, Luchuan Guo*
ByteDance Ltd.
*San Jose, CA, USA TSingapore iShanghai, China
{xianhao.jin, yifei.feng, wangchen.roy, liuyang.leon, yongning.hu, yufei.gao, kun.xia, luchuanguo} @bytedance.com

Abstract—Continuous Integration (CI) and Continuous De-
ployment (CD) are widely used practices in modern software
engineering. Unfortunately, it is also an expensive and com-
plicated practice — setting up a CI/CD pipeline can be time-
consuming and error-prone. CI/CD pipelines at ByteDance can
be set up and modified through the user interface by dragging
each atom onto the screen to maximize its customizability.
However, these operations increase the difficulty of reuse and
version tracking. In this work, we design PIPELINEASCODE as
a CI/CD workflow management system using configuration files
to provide high portability and traceability. PIPELINEASCODE is
seamlessly integrated with the CI/CD system at ByteDance which
is named as “ByteCycle”. We also assess PIPELINEASCODE
in two dimensions to determine its strengths by addressing
two key questions: what types of pipelines developers prefer
to manage using PIPELINEASCODE, and how pipelines evolve
after the adoption of PIPELINEASCODE. The evaluation results
show that pipelines managed by PIPELINEASCODE generally
have a higher build frequency, fewer steps, a higher change
frequency, a lower success rate and a longer build duration. After
the adoption of PIPELINEASCODE, pipelines tend to have fewer
steps, a higher build frequency, a longer build duration, a higher
success rate and a higher change frequency. The results show
that PIPELINEASCODE is capable of improving the reliability
and flexibility of CI/CD pipelines and thus encourages users to
build and deploy more frequently.

Index Terms—continuous integration, continuous deployment,
software maintenance, empirical software engineering

I. INTRODUCTION

Continuous Integration (CI) is a software development prac-
tice by which developers integrate code into a shared repos-
itory several times a day [15] and Continuous Deployment
(CD) is a software development practice that works in con-
junction with CI to automate the infrastructure provisioning
and application release process [20]. At ByteDance, CI/CD
operations are completed on the platform of “ByteCycle”
where developers can set up their customized CI/CD pipelines
using different combinations of atoms (one atom is a unit
service to perform a group of related tasks, allowing ByteCycle
to integrate with other platforms) and trigger the build process
based on their own preferences. However, the setup of the
pipeline can be a very manual process, demanding numerous
clicks with the mouse: developers need to find their target
atoms in the atom market patiently, add the input of each atom
correctly, and arrange the execution order of atoms cautiously

if they want to create a pipeline from O to 1. This is already
time-consuming, not to mention developers may also need to
set the appropriate trigger schedule and make modifications
to the pipeline from time to time. What is even worse, if one
developer wants to create a very similar pipeline or just reuse
this pipeline in some other places, the developer will have
to repeat this process. In addition, once the changes on the
pipeline are saved, it is very difficult to rollback it to previous
versions and track the change history of this pipeline.

In this work, our goal is to automate the process of reusing
the CI/CD pipelines and to improve the pipelines’ version-
tracking ability at ByteDance. To achieve this goal, we propose
PIPELINEASCODE by taking advantage of the idea of “as
code” such as infrastructure as code [47] and utilize config-
uration files as the definitive source for maintaining CI/CD
pipelines. Once the configuration file is translated successfully,
developers have the option to copy and paste it for reuse when
setting up the pipeline. Then developers also gain the ability
to track the modification history of the pipeline by checking
the configuration file in the codebase repository. Although this
concept has been successfully implemented by other existing
tools [10], we still find it necessary to design our own system
to integrate with our unique CI / CD platform at ByteDance
and the actual performance of the idea is still unclear.

Furthermore, we provide the first empirical study to evaluate
PIPELINEASCODE to understand the specific preferences of
developers when it comes to managing them with PIPELIN-
EASCODE and examine the transformations that occur in
pipelines after the integration of PIPELINEASCODE. We an-
swer the following two research questions:

RQ1: What types of pipelines do developers prefer to manage
using PIPELINEASCODE?

RQ2: How do pipelines evolve after the adoption of PIPELIN-
EASCODE?

To answer RQI, we compare the characteristics of the
pipelines that adopt PIPELINEASCODE with other pipelines
that do not adopt it. To answer RQ2, we compare the
characteristics of the pipelines before and after the adoption
of PIPELINEASCODE. For both research questions, we used
five metrics to measure the characteristics of pipelines: the
duration of pipeline construction, the frequency of pipeline

to be triggered, the frequency of pipeline to be modified, the
pipeline success rate, and the number of atoms included in the
pipeline. These metrics can be used to reflect the complexity
of the pipeline and the developer behaviors on the CI/CD
pipelines.

The results of RQI show that pipelines managed by
PIPELINEASCODE have a higher build frequency, fewer
atoms, a higher change frequency, a lower success rate, and
a longer build duration, in general. The findings of RQI1
imply that developers may prefer to use PIPELINEASCODE on
simpler pipelines that need to be triggered and changed more
often and hope that PIPELINEASCODE can make pipeline
modifications easier and cause fewer failures. The results of
RQ2 reflect that pipelines tend to have fewer atoms, a higher
build frequency, a longer build duration, a higher success
rate and a higher change frequency after the adoption of
PIPELINEASCODE. The RQ?2 findings confirm the benefits of
our tool PIPELINEASCODE, which can allow developers to
build pipelines more often, reduce the possibility of bursting
the pipeline, and make pipeline modifications easier. The
findings also show that the adoption of PIPELINEASCODE
can improve the reliability of CI/CD pipelines by causing
fewer failures and flexibility through more frequent changes in
pipelines so that CI/CD users are encouraged to run pipelines
more frequently to observe failures earlier and to make more
frequent deployments.

II. BACKGROUND
A. Continuous Integration

Continuous integration (CI) is a DevOps practice [11] soft-
ware development in which developers regularly merge their
code changes into a central repository, after which automated
builds and tests are run. Continuous integration aims to solve
the problem that developers might work in isolation and check
their changes only after its full completion, resulting in time-
consuming merging and accumulated bugs without correction.
Continuous integration benefits the software development team
by improving developers’ productivity, finding and addressing
bugs earlier, and accelerating the delivery process. The best
practices of continuous integration require developers to com-
mit early and often. Well-known examples of CI services are
Jenkins', Travis?, and CircleCI® [22]. CI services can also
be built-in in social coding platforms such as GitHub and
GitLab [9]. In addition, big tech companies such as Google
and Facebook have their own designed continuous integration
system.

A complete CI build comprises 1) a traditional build and
compile phase, 2) a phase in which automated static analysis
tools (ASAT) are used, and 3) a testing phase, in which unit,
integration, and system tests are run [4]. In practice, the build
can include multiple jobs, and these jobs can be executed in
a parallel way. Any failure occurring in any of these three
phases can cause the build to fail, i.e., error, or fail.

Uhttps://www.jenkins.io/
Zhttps://travis-ci.org/
3https://circleci.com/

B. Continuous Delivery and Continuous Deployment

Continuous Delivery (CDE) is a software engineering ap-
proach in which teams continue to produce valuable software
in short cycles and ensure that the software can be reliably
released at any time [6]. Companies that practice continuous
delivery have reported great benefits, such as significant im-
provements in time to market, customer satisfaction, product
quality, release reliability, productivity and efficiency, and the
ability to build the right product through rapid experiments
[7], [40]. As best practice, continuous delivery often works
in conjunction with CI to automate the process of establishing
the infrastructure and releasing applications. After the code has
passed the phases of building and testing within the CI process,
Continuous Delivery takes the reins in the final stages to
package it with all the necessary components for deployment
in multiple environments at any given time.

Another concept similar to Continuous Delivery is Contin-
uous Deployment (CD), which refers to the automatic and
continuously deploy of the application to target environments.
What differentiates continuous deployment from continuous
delivery is a production environment (i.e., actual customers):
the goal of continuous deployment practice is to automatically
and steadily deploy every change in the production envi-
ronment [60]. Continuous deployment often involves canary
deployment for testing in the production and multiple control
plane deployments for better performance, high availability,
and high reliability.

C. ByteCycle at ByteDance

ByteCycle is an automated Research and Development
(R&D) management platform including CI/CD management
provided by ByteDance. It provides end-to-end R&D solu-
tions across requirements, research and development, testing,
releases, operations and maintenance, and measurements. In
this way, ByteCycle empowers teams to standardize Research
and Development processes and improve team collaboration
efficiency for improved Research and Development efficiency.
ByteCycle is a one-stop research and development manage-
ment platform initiated by different teams. It connects the
entire development process, from needs analysis to research,
development, construction, testing, release, operation, and
measurement, to address the issue of fragmented development
activities caused by the dispersion of supporting platforms. Its
purpose is to enhance the development experience.

The core concept of ByteCycle is pipeline, which is used
to describe the workflow of the CI/CD process, and there
are primarily two kinds of pipeline: free-style pipeline and
project pipeline. The former is managed in the different
workspaces for authorization. Freestyle pipelines are free to
modify including their atoms and trigger schedules. Project
pipelines are bound to the corresponding projects and have
more specific purposes. For example, project pipelines can be
created to deploy the application to the test environment or
run in the integration test. Project pipelines can also be used
to rollback the previous deployments that are also applied
through pipelines. Both freestyle and project pipelines have

Pipelines / Pipeline details

paccdv w &
Creatol C

2ated at: 2022-10-01 13:20:05

Latest All

Build Details ~ Build information No.329 = Success

Allviews ~ 1 Compile and BOE deployment

Engine Unit Test SCM facade offline comp... . Deploy facade to BOE fea... .
© [IO : (] i

m58s : 1475 : m28s
SCM engine offline comp... . Deploy engine to BOE fea... .
O s : © 20 :

Upgrade facade and engin... = Success at 2023-09-0110:29:03 Tth execution View docs

Details Log Parameter Variable

cni#canal.pac.engine ¢ Source link cn#canal.pac.facade & Source link

in at 2023-09-01 10:11:53 triggered by git event (® 20m8s

detail & Source link

& Add remarks Rerun

2 Integration test 3 Deploy to BOE prod env

—
Integration Test Upgrade facade and engi... .
© 2m56s : © 2m58s :

Fig. 1: Example pipeline in ByteCycle.

the same components: e.g., a list of atoms to be executed
in specific orders, a list of trigger conditions to describe the
trigger schedule and a list of variables to set the inputs of
atoms or convey values across atoms. The atom service of
CI/CD pipelines is introduced as a new concept in ByteCycle.
An atom is designed to complete some specific related tasks
to let ByteCycle integrate with other platforms, e.g., build the
application, deploy it to the test environment, and perform
manual confirmation. Developers can customize their own
atoms and publish the atoms to the open-atom market to be
used across the ByteCycle platform. ByteCycle pipelines also
support sub-pipelines, which means the main pipeline depends
on the sub-pipelines and will wait until the sub-pipelines
are completed and can gather some information from sub-
pipelines. This feature is also implemented by a specific atom
called the “subpipeline driver”.

Figure 1 depicts an example pipeline for deploying two
related applications in the deployment environment in ByteCy-
cle. From the screenshot, we can observe that the latest build in
the pipeline provides essential information, such as the build
number, trigger type, trigger time, and build duration. The
pipeline has three phases, and each phase includes multiple
atoms. In the first phase of “Compile and BOE deployment”,
the atom is added to run some unit tests. Following comple-
tion of the task, two subroutines operate simultaneously to
compile the two applications and deploy them into the test
environment. Then in the second phase, the integration test is
conducted based on the deployed applications in the former
phase. Finally, if the integration tests are passed and all prior
atoms are successfully executed, the last atom will deploy
the two applications into the benchmark ByteDance Offline
Environment. By clicking the atom, detailed execution output
and logs can be found at the bottom.

To better manage pipelines, ByteCycle also supports the
creation of pipelines using templates. Templates have com-
ponents similar to pipelines including atoms with execution

orders, variables, and triggers, but can be used to instantiate
multiple pipelines. Project pipelines are often bound with
templates, and when developers want to do some specific
operations like deployment to production, they can choose the
corresponding templates to generate a pipeline and complete
the tasks. PIPELINEASCODE also provides the ability to
manage templates in ByteCycle.

ITII. THE DESIGN OF PIPELINEASCODE

We design PIPELINEASCODE to receive a configuration file
that describes all the information required for a pipeline as in-
put and there are two main components of PIPELINEASCODE:
the facade and the engine, as shown in Figure 2. PIPELINEAS-
CODE is able to receive input configuration files from three
resources: Software Development Kit (SDK), Command Line
Interface (CLI), and Codebase at ByteDance. The SDK of
PIPELINEASCODE allows users to call the service using their
code, while the CLI provides a user interface where develop-
ers can input commands to manage pipelines of ByteCycle.
PIPELINEASCODE can also connect to the codebase so that
the pipelines can be started and the corresponding outcomes
can be monitored when developers submit the code and trigger
the codebase process on ByteDance. The facade component
of PIPELINEASCODE is a web service that receives HTTP
calls using a framework developed internally. The facade
service assumes responsibility for processing requests orig-
inating from the three aforementioned resources while also
guaranteeing the fulfillment of authentication prerequisites.
The engine component of PIPELINEASCODE is a service that
uses an RPC framework named Kitex [68]. It includes the core
business logic of PIPELINEASCODE including the connection
to the database and sending requests to ByteCycle. We will
introduce the design of the PIPELINEASCODE engine in a
more detailed way in the following subsections.

{ PipelineAsCode SDK } { PipelineAsCode CLI } [Codebase }

Configuration Configuration Configuration
file file file

PipelineAsCode engine

PipelineAsCode H
Database PipelineAsCode :
Core 3

API
Requests

ByteCycle

Fig. 2: Breif design of PIPELINEASCODE.

A. Configuration File of PIPELINEASCODE

The configuration file of PIPELINEASCODE is designed in
Yaml format, while the fields are defined in protobuf [64]. The
benefit of using protobuf is that it is validated and translated
and is consistent with the coding habit of the US ByteCycle
team. Each configuration file is assigned a distinct file identi-
fier that has global uniqueness and is automatically generated
through the PIPELINEASCODE service. Consequently, should
developers aim to initiate a new pipeline, they are obliged
to invoke the PIPELINEASCODE service to obtain a new file
identifier. One configuration file is able to contain multiple
pipelines, but only one of them can be the main pipeline,
and other pipelines need to be sub-pipelines of the main
pipeline. Moreover, it is worth mentioning that each pipeline
is composed of multiple steps, wherein each individual step
corresponds to a discrete atom. The determination of the
appropriate atom to be utilized in a given step is contingent
upon the specification provided in the “uses” field of that
particular step. The step also includes the field of “dependsOn”
to reflect the dependency relationship and the execution order
of the steps: if step 1 depends on step 2, it means that step 1
needs to be executed after step 2 is completed. These pipelines
are accompanied by additional information that serves to
describe them, including triggers and the contents of variables.
PIPELINEASCODE allows pipelines to be triggered on the
basis of a git event or schedule. Lastly, another attribute,
called the “workspace label”, is used to indicate the specific
workspace within which the pipeline will be instantiated.

An example of the configuration pipeline is shown in
Listing 1. It is a simpler version of the pipeline introduced
in Figure 1 that involves only the deployment of one software
application rather than two software applications. From the
example configuration file, we can find that the id is listed
on the top and it only includes one pipeline. The pipeline,
called “pac cd”, encompasses a series of five distinct steps.
The initial step initiates a shell and executes the specified
commands to perform unit tests. Subsequently, the second

step depends on the completion of the first step and proceeds
to compile the software, taking into account the provided
repository name and branch. Once the second step is finalized,
the third step becomes viable, allowing the deployment of the
package compiled from Step 2 into the testing environment.
In Step 4, a separate shell is generated to perform integration
testing. Finally, after the successful completion of all previous
steps, the last step is triggered to deploy the compiled package
from Step 2 to the benchmark environment. In addition, the
trigger information is also listed in the configuration file: This
specifies that this pipeline will be triggered when there are git
merge events on the target branch of the target repository.

Listing 1: Configuration file example

id: plb9%alé6al2eb
pipelines:
- id: pac_cd_4613549
isMain: true
name: pac cd
steps:
— dependsOn:

r_r

id: devops_shell-7850e8
input:
run_context: |-
go-byteview test —-gcflags="all=-1 -N"
$(go list ./... | grep -v /dal)
echo "byteview done"
timeout: 1200
name: Engine Unit Test
uses: bytecycle/devops_shell
— dependsOn:
— devops_shell-7850e8
id: scm_compile_beta-ccaOf4
input:
scm_configs:
- pub_base:
revision: master
scm_repo_name: canal/pac/engine
name: SCM engine offline compilation
uses: bytecycle/scm_compile
— dependsOn:
- scm_compile_beta-ccalOf4
id: boe_create_env-3d5178

branch_base

input:
env_name: pac_staging
host_type: docker
keep_days: 15
psm_list:

— canal.pac.engine
name: Deploy engine to BOE feature lane
uses: bytecycle/boe_deploy
— dependsOn:
- boe_create_env-3d5178
id: devops_shell-a99bcd
input:
run_context: |-
go-byteview test
timeout: 1200
name: Integration Test
uses: bytecycle/devops_shell
— dependsOn:
— devops_shell-a9%9%cd
id: boe_create_env-9196c7

./integration_test

input:
psm_list:
- canal.pac.engine
- canal.pac.facade
name: Upgrade facade and engine in BOE
prod lane
uses: bytecycle/boe_deploy

triggers:
- git:
change:
events:
- GIT_MR_EVENT_MERGE
repository: canal/pipeline_as_code
targetBranch: master
workspaceLabel: bytecycle_pac

B. PIPELINEASCODE Engine Service

As the core service of PIPELINEASCODE, the engine ser-
vice is an RPC service that functions as a mediator for process-
ing requests originating from the facade service. It is respon-
sible for translating these requests into the appropriate format,
subsequently persisting them into a database, and invoking
the ByteCycle APIs using a translated configuration file. The
database we select for PIPELINEASCODE is an internally de-
veloped database based on MongoDB [3]. MongoDB is chosen
as the preferred database solution due to its inherent flexibility
and efficient querying capabilities. In particular, the absence of
rigid relationships among files enables each file to be treated
as an independent record within the database. Engine service
offers a diverse set of functionalities to facilitate interaction
with ByteCycle. Developers have the ability to create pipelines
and subsequently initiate their execution. Moreover, devel-
opers can convert existing pipelines into configuration files
and remove pipelines by specifying the corresponding file
identifier. Furthermore, PIPELINEASCODE also provides some
abilities for developers to manage templates, e.g., create, delete
templates, and bind the templates to projects. An additional
crucial component within the engine service is the parser.
This element plays an indispensable role in facilitating the
conversion of configuration files to accommodate the different
formats required for the PIPELINEASCODE engine, database
and ByteCycle server.

IV. RESEARCH METHOD

In this section, we discuss how we collect the data set
and what metrics we use to evaluate PIPELINEASCODE, and
introduce the details of the evaluation process.

A. Data Set

We perform our study over the dataset which includes all
pipelines managed by PIPELINEASCODE. The pipeline ids of
the pipelines can be found in the database of PIPELINEAS-
CODE in the field of “bc_pipeline_id”. The database includes
2731 pieces of records, which means that 2731 configuration
files have been created through PIPELINEASCODE. Out of
the 2731 records we have, 1779 are pipeline configuration
files and the rest are template configuration files. We did
not include template configuration files in the evaluation

experiments because templates cannot be executed and have a
very similar structure to pipelines. Sometimes, more than one
configuration file is used to manage the same pipeline. After
we remove these duplicates, we are left with 452 different
pipelines which are currently managed by PIPELINEASCODE.
The initial data entry was generated on 20 October 2022.
The selected temporal interval for this study was one year,
indicating that all data was produced prior to October 20, 2023.
We collect the information of pipeline id, build number, build
status, create time, update time, and the step graph for each
pipeline.

In an effort to understand the types of pipelines more
inclined to utilize PIPELINEASCODE, we additionally collect
data on pipelines not regulated by PIPELINEASCODE from
ByteCycle. We executed a random selection of 452 pipelines
(the same amount of pipelines as in the previous paragraph)
that were instantiated within an identical time frame when the
452 pipelines managed by PIPELINEASCODE were formed.
We also perform a filter process that excludes all pipelines
that are only created and never triggered to build. The cor-
responding information from these non-PIPELINEASCODE-
managed pipelines has been collected to be examined. We
provide multiple statistics about the projects studied in Table I.
Pipelines managed by PIPELINEASCODE have a total of
14546 builds, and all these builds are triggered between Octo-
ber 2022 and October 2023, while pipelines not managed by
PIPELINEASCODE have a smaller number of builds (13167)
and the builds have a similar time span of creation.

B. Metrics

To understand what pipelines adopt PIPELINEASCODE
and how pipelines have changed after the adoption of
PIPELINEASCODE, we measured five metrics in this eval-
vation: Success_Rate, Build_Frequency, Change_Frequency,
Build_Duration, and Step_Number. We measured each of these
metrics across all builds of a pipeline. Then we plot the result
of each metric in a box plot, where each box represents the
distribution of values for all the studied pipelines.

Success_Rate is the proportion of successful builds among
all builds. This metric measures how reliable and efficient the
pipeline is. It also reflects the benefit of CI to detect errors at an
earlier stage. If a pipeline has a higher success rate after the
adoption of PIPELINEASCODE, it means that PIPELINEAS-
CODE may be able to reduce the failures of pipeline builds
and improve the efficiency of artifact deployment.

Build_Frequency is measured as the daily frequency of
triggered builds. This metric measures the active level of the
pipeline and the ability of the pipeline to detect failures at an
early stage. If a pipeline has a higher build frequency after the
adoption of PIPELINEASCODE, it means that the adoption of
PIPELINEASCODE may encourage developers to build more
often, allowing them to find faults in advance. If pipelines
with higher build frequency prefer to use PIPELINEASCODE,
it may suggest that PIPELINEASCODE offers certain benefits
that are particularly advantageous for pipelines where frequent
updates, modifications, or other activities are taking place.

TABLE I: Characteristics of the studied pipelines.

Pipeline Type # pipelines # builds Earliest Creation Time Latest Creation Time
Pipelines managed by PIPELINEASCODE 452 14546 20-Oct-22 20-Oct-22
Pipelines not managed by PIPELINEASCODE 452 13167 23-Oct-23 18-Oct-23

Change_Frequency is measured as the proportion of builds
where the pipeline is changed among all builds. For example,
if one pipeline is triggered four times and its composition is
changed only once in this period, the value of this metric
will be 0.25. The frequency of pipeline modification repre-
sents an empirical measure of the flexibility of a pipeline.
If pipelines characterized by a higher rate of changes prefer
to use PIPELINEASCODE, it could indicate the advantages
of PIPELINEASCODE to make changes easier in pipelines.
This can also be confirmed if the pipeline is modified more
frequently after the adoption of PIPELINEASCODE.

Build_Duration is measured as how long it takes to execute
each build in seconds. It can partially reflect the complexity
of the pipeline. Pipelines with longer duration may want to
use PIPELINEASCODE because it can provide high reliability
to these complex pipelines and ensure that it does not need
to be rerun and takes extra time. If a pipeline takes a longer
duration after adopting PIPELINEASCODE, it may reflect that
developers tend to add more time-consuming atoms to the
pipeline.

Step_Number is the number of steps that are included in the
pipeline when the build is triggered. We use the median value
of the step number across builds to represent the pipeline step
number. This metric can be used to represent the complexity
of the pipeline. If the pipeline tends to have more steps after
the adoption of PIPELINEASCODE, then it may indicate that
PIPELINEASCODE provides developers with more convenient
ways to edit the pipelines to make it more complicated. It may
also suggest that the PIPELINEASCODE configuration files are
easy to understand and modify if pipelines with more steps
prefer to adopt the tool.

C. Evaluation Process

To answer RQI1, we calculated the value of each feature
for each pipeline and plot the result in a box plot. Each box
includes all values for every studied pipeline. We compared
the box generated from all pipelines that are managed by
PIPELINEASCODE and all pipelines that have not adopted
PIPELINEASCODE. We tested our results for statistical sig-
nificance with a Wilcoxon rank-sum test (Mann-Whitney U
test) because the samples are not paired, and decided statistical
significance for p < 0.05.

To answer RQ2, we followed a similar process as RQI,
but only considered pipelines that adopt PIPELINEASCODE
and split the builds of each pipeline into two parts: before
the adoption of PIPELINEASCODE and after the adoption of
PIPELINEASCODE based on the first build that was triggered
by PIPELINEASCODE. We also drew box plots as the prior ex-
periment, and each box has the values for all studied pipelines.
In this experiment, the samples are related and paired because
each data point pair represents the same pipeline in different

time periods, so we used Wilcoxon signed-rank test for statis-
tical significance test and also decided statistical significance
for p < 0.05.

V. RESULTS

A. RQI: What types of pipelines do developers prefer to
manage using PIPELINEASCODE?

The results of RQ1 are plotted in Figure 3. This figure
shows the median value for each metric in all pipelines studied.
The Y axis is the evaluation metric, and each box contains
the result of all pipelines. The X axis has the meaning of
pipelines managed vs. not managed by PIPELINEASCODE. We
make a few observations from our results. First, the pipelines
managed by PIPELINEASCODE have a success rate with a
median value of 40%, a build frequency with a median value
of 0.94, a change frequency with a median value of 0.05,
a build duration with a median value of 494 seconds and a
step number with a median value of 7. This shows that these
pipelines are generally rarely changed. Observing pipelines
that have not been managed by PIPELINEASCODE, we can
find that the data from these pipelines show a median success
rate of 51%, a median build frequency of 0.34, a median
change frequency of 0.02, a median build duration of 482.5
seconds and a median step count of 12. These observations
show that ByteCycle pipelines are also rarely modified and a
pipeline has a median value of 12 steps or atoms, making it
relatively complex.

By comparing the characteristics of the pipelines managed
and not managed by PIPELINEASCODE using the five metrics,
we can observe that the pipelines managed by PIPELIN-
EASCODE have a higher build frequency, a higher change
frequency and a longer build duration, while the pipelines not
managed by PIPELINEASCODE have more steps and a higher
success rate. These differences were statistically significant
(p < 0.05). We posit that developers may prefer to apply
PIPELINEASCODE to those pipelines that are often required
to build and change, are generally less complicated and are
more likely to break. We think this may be because PIPELIN-
EASCODE is capable of making pipeline modifications simply
by editing the configuration files and PIPELINEASCODE can
trigger the pipeline in a more convenient way because it ac-
cepts multiple input resources. However, those more complex
pipelines are less likely to adopt PIPELINEASCODE because
too many steps can make the configuration file too long to read
and comprehend, especially compared to the visualization user
interfaces.

B. RQ2: How do pipelines evolve after adopting PIPELIN-
EASCODE?

Our analysis of RQ2 is presented in Figure 4, which
contains the values for each metric of the pipelines studied.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

Success rate

T

1

with PipelineAsCode without PipelineAsCode

0.14 1600
1400

1200

o
b

g

8

3

Build duration
m
2
3

a
3
3

Change frequency

1

pipelines with PipelineAsCode

with PipelineAsCode without PipelineAsCode

=
=)

R —
with PipelineAsCode

Build frequency
O B N W & U1 O N 0 O

without PipelineAsCode

Step number

- T

T s

: 1T

pipelines with PipelineAsCode

—T—

pipelines without PipelineAsCode pipelines without PipelineAsCode

Fig. 3: Characteristics of pipelines with vs. without PIPELINEASCODE

The Y-axis represents the evaluation metric, and each box
contains the data for all pipelines. The X-axis distinguishes the
pipelines before the adoption of PIPELINEASCODE compared
to the same pipelines after the adoption of PIPELINEASCODE.
On the basis of the results, we can make a few observations.
First, pipelines before adopting PIPELINEASCODE have a suc-
cess rate with a median value of 20%, a build frequency with a
median value of 0.83, a change frequency with a median value
of 0.02, a build duration with a median value of 210 seconds
and a step number with a median value of 7.5. After the
adoption of PIPELINEASCODE, the median change frequency
of pipelines increases to 0.66, the median build frequency
increases to 0.95, the median build duration increases to 531
seconds, and the median success rate increases to 45%. These
differences were statistically significant (p < 0.05). Therefore,
we depict that the adoption of PIPELINEASCODE may be
able to promote ByteCycle pipeline reliability by reducing the
number of failed builds.

As the major benefit of continuous deployment lies mainly
in the faster delivery of features, quality and customer sat-
isfaction [50], PIPELINEASCODE can maximize the benefit
because it improves the reliability of the pipelines so that the
pipelines can deliver quality software to end users on time.
Furthermore, we also find that adopting PIPELINEASCODE
allows pipelines to be triggered more frequently. This is
also beneficial because more frequent builds obey the best
practice of Continuous Integration and Deployment. Thanks
to the increasing build frequency, CI/CD users can identify
errors at an earlier stage, preventing them from becoming
too significant to resolve. Additionally, we can also observe
that the frequency of change in pipelines also increases with
the adoption of PIPELINEASCODE. This may reflect that
PIPELINEASCODE can promote the flexibility of the CI/CD
pipelines because users are more willing to adjust the pipelines

based on demands or preferences. The increasing flexibility
of pipelines can ensure that the pipeline is up-to-date and
performs testing and deployment on the basis of the latest
needs. In addition, the duration of pipelines has also been
increasing since the adoption of PIPELINEASCODE. This may
be because users recently changed some steps that are more
time-consuming or because the builds are more frequent,
which requires CI/CD users to do some manual operations
on the pipelines more often. Users may want to explore the
reason for the longer duration to maintain the high efficiency
of the pipelines. The last trend that we observe in Figure 4 is
that pipelines tend to have fewer steps after the adoption of
PIPELINEASCODE. This might suggest that CI/CD users may
find it less convenient to use configuration files to manage
pipelines with a long list of steps because it is hard to
clearly understand the execution order of the steps without
visualization. This may also imply that one main bottleneck
of applying the idea of “as code” practice is that it requires
more knowledge transfer and the configuration files are less
accessible compared to user interfaces.

VI. DISCUSSION

In this section, we discuss the challenges encountered and
lessons learned during the process of designing PIPELINEAS-
CODE and achieving its standards to meet user requirements.
We also discuss the forthcoming challenges that need to be
addressed in the system.

A. Lesson Learned

The first thing we learned about is the trade-off between
using configuration files and the user interface when describing
CI/CD pipelines. The trade-off lies in the aspects of flexibility,
transparency, history tracking, and ease of use. The user
interface is generally more intuitive and user-friendly. It is
able to provide a visualization for each pipeline, and the

100%
90%
80% T
70%
60%
50%

40%
30%

20%
10%
T

0%
before PipelineAsCode after PipelineAsCode

Success rate

=
=)

Build frequency

O R N WHRUUON®O

—T—

before PipelineAsCode after PipelineAsCode

w
=)

N
[

N
=)

Step number
=
v

T

0.16 2500
0.14
2000
5. 0.12
g
c c
g 01 S
g % 1500
£ 0.08 3
& =
£ 0.06 2 1000
<)
=

L
before PipelineAsCode

© 0.04
500
002
0

after PipelineAsCode

before PipelineAsCode

=
15

[}

| " T

after PipelineAsCode before PipelineAsCode after PipelineAsCode

Fig. 4: Characteristics of pipelines before vs. after adopting PIPELINEASCODE

changes will have an immediate impact. Users can clearly
understand the structure of the pipeline and easily query the
status. However, user interfaces also limit the ability of porting
pipelines, and it is hard to track the change history and realize
the version control on user interfaces. On the other hand,
configuration files enable easier pipeline replication and it is
convenient to win the version control by checking the file into
codebase repository. Configuration files can also provide users
with a better flexibility to make modifications to the pipelines.
These were the motivations of PIPELINEASCODE. However,
there are also drawbacks of using configuration files because
they are difficult to understand without background knowledge
and difficult to find the error when editing the file, resulting
in a trade-off between user interfaces and “as code” practices.

Another lesson we learned during the design of PIPELIN-
EASCODE is how to overcome the security issue. PIPELIN-
EASCODE faces both the issues of authorization and authen-
tication: the system must identify the input creator and also
decide what permission the creator should have. To address
this, the PIPELINEASCODE command line interface takes
advantage of ByteDance Single Sign On system that requires
users to log in through QR code when using the tool, and
their information will be cached for a specific period of time.
When sending requests to the PIPELINEASCODE service, the
user’s JSON Web Token will be packaged as well for the
authorization requirement from ByteCycle. Other lessons we
learned include the input diversity requirement, the trade-off
between Protobuf and JSON, and the appropriate selection of
databases.

B. Forthcoming Challenges

One challenge that must be overcome is how to detect errors
when editing configuration files. As mentioned in §VI-A,
it is hard to find the error when editing the configuration
file. Currently, the integrated development environment (IDE)

cannot detect errors when modifying the PIPELINEASCODE
configuration files, as the user interface can. Therefore, future
plugins can be developed to support the detection of typos
and incorrect input in the configuration files. This also raised
another challenge to locate the bug in the configuration file and
the automatic fix suggestion given the log of a broken build.
Although the existing work [25] aims to repair the build scripts
automatically, the evaluation results still suggest that these
tools can only fix a small proportion of failures with limited
accuracy and have not been used in industrial scenarios.

Another forthcoming challenge that requires to be solved
is how to simplify the configuration files as much as possible
so that it saves users’ effort when doing knowledge transfer.
Our PIPELINEASCODE is designed to simplify the input of
those steps by removing the unnecessary fields, however, those
inputs still look very complicated and this has greatly restricted
the adoption of PIPELINEASCODE. From §V, we can also find
that pipelines with less complex structures are more likely
to use PIPELINEASCODE for management, and after users
become familiar with the tool, the number of steps in the
pipelines starts to increase. Therefore, the development of tools
that are able to shorten the input length of the steps or auto-fill
the configurations is motivated. Another challenge is related
to how to keep the uniqueness of the source of truth as it can
come from multiple resources such as configuration files and
user interface. Other challenges to be addressed include strong
dependency issues of PIPELINEASCODE on other platforms,
making it difficult to be resolved to other places.

VII. THREATS TO VALIDITY

A. Internal Validity

To guard internal validity, we collected all pipelines man-
aged by PIPELINEASCODE and all pipelines have at least one
build. Our analysis could also be influenced by uncompleted

information in our analyzed dataset because we randomly
select a subset of pipelines in the ByteCycle database. For
this, we guaranteed a random selection process and performed
a filter process to exclude all pipelines that have no build
history. To ensure that we compare things accurately and fairly
over time, we kept the same number of pipelines managed by
PIPELINEASCODE as those not managed by it. We also made
sure that these pipelines were created at the same time as when
we started using PIPELINEASCODE. This ensures that the data
is up-to-date.

The analysis of the success rate may also influence the
proportion of builds whose status is “pending”. The “pending”
status indicates that the build is currently being held and re-
quires some manual confirmation from the users. These builds
may eventually become successful if users operate correctly on
them. We did not count builds with such a status as successful
builds because the pending duration in the collected data set
has exceeded one day, and thus we consider these builds
broken. Our results may also be affected by flaky tests that
cause spurious failure builds. However, CI/CD systems are
expected to function even in the presence of flaky tests, since
most companies do not consider it economically viable to
remove them e.g., [43], [46]. Our observed pipeline runtimes
may have been influenced by the load experienced in the build
server at the time. However, we consider this potential impact
to be very low and it may influence all pipelines, regardless
of whether they have or have not adopted PIPELINEASCODE.
Another factor that may influence the findings is the logical
inferences and conclusions drawn from the research results.
However, our evaluation process controlled the variables by
comparing the same pipeline before vs. after the adoption of
PIPELINEASCODE and the results are statistically significant.

B. External Validity

To increase external validity, we selected all pipelines
that were included in the PIPELINEASCODE database and
randomly collected the same number of pipelines from the
ByteCycle database after a filtering process. The pipelines we
chose were mostly using Golang because Golang is the domi-
nant programming language used at ByteDance. Although this
programming language is widely used, different CI habits in
other languages may provide slightly different results from
those in this study. Our observations may slightly vary for
separate software projects, but our goal was to derive general
observations for a real-world population of software projects.
Given that the pipelines we collected were all from industrial
areas, the results may not be always applicable to some smaller
open-source projects.

C. Construct Validity

A threat to the validity of the construct is whether we
studied software projects that are similar to those in the real
world. However, we randomly selected the pipelines from the
database, and all the projects selected were industrial projects,
which can ensure that they have similar characteristics to
other real-world projects. Another threat to construct validity is

whether the metrics measured are able to reflect the reliability
and flexibility of CI/CD pipelines. However, existing work [6],
[28] has determined that the benefit of the CI / CD process
includes early failure detection and a faster deployment pace
and that the failure of the builds can negatively influence the
reliability of the process negatively. In this paper, we also
use the change frequency to represent the flexibility of the
pipelines because more frequent modifications on the pipeline
can ensure that the pipeline meets the latest requirements of
the projects and gets adjusted timely. We also used the build
duration and the number of steps to represent the complexity
of the pipeline, as many existing works did [19], [24], [32].

To answer RQI, each data point in the box plot is from
different pipelines and is not paired with each other. Therefore,
we used the Wilcoxon rank-sum test (Mann-Whitney U test)
for the statistical significance test. On the other hand, each data
point in the box plot to answer RQ2 is paired with each other
because they refer to the characteristics of the same pipelines
before and after the adoption of PIPELINEASCODE. Thus, we
selected the Wilcoxon signed-rank test as the method of the
statistical significance test.

VIII. RELATED WORK
A. Empirical Studies of CI/CD with Cost and Benefit

Multiple researchers focused on understanding the practice
of CI, studying both practitioners e.g., [28] and software
repositories [66]. Vasilescu et al. studied CI as a social coding
tool [65], and later studied its impact on software quality and
productivity [66]. Zhao et al. studied the impact of CI in other
development practices, such as bug fixing and testing [74].
Stahl et al. [62] and Hilton et al. [28] studied the benefits
and costs of using CI and the trade-offs between them [27].
Lepannen et al. studied the costs and benefits of continuous
delivery in a similar way [40]. Felidré et al. [14] studied the
adherence of projects to the original CI rules [15]. Other recent
studies analyzed testing practices [18], difficulties [51], and
pain points [69] in CI. The high cost of running builds is
highlighted by many empirical studies as an important problem
in CI [26], [28], [27], [51], [69]. People [27], [66] believe that
the benefit of CI lies mainly in early fault detection. Others
[28], [40] find that projects adopting CI are able to adopt
pull requests and release in a shorter time. Some also find
that CI can help the developer team in other areas, such as
providing a common building environment [27] and increasing
team communication [62].

Other researchers worked to explain why CDE is adopted
and report the huge benefits and challenges involved [6]. Chen
et al. presented strategies to help overcome the challenges of
CDE [7] and Virmani et al. also explained how to bridge
the gap of CDE to promote the adoption [67]. Savor et
al. explained how CD has been achieved at Facebook [58].
Existing work [8] also examined the challenges faced by
organizations when adopting CD, as well as strategies to
mitigate these challenges. Yang et al. explored two types of
workflow in CD including Docker Hub auto-builds Workflows
and Cl-based Workflows [73]. Other works also explained the

difference between CD and CDE and their own approaches
and challenges [59], [60].

B. Approaches to Improve CI/CD

A related effort to improve CI aims at speeding up its
feedback by prioritizing its tasks. The most common approach
in this direction is to apply test case prioritization (TCP)
techniques e.g., [12], [13], [42], [44], [49], [57], [76] so that
builds fail faster. These techniques, although not designed to
work in a CI environment, have been claimed to have the
potential to provide CI users with earlier fault observation.
Another similar approach achieves faster feedback by priori-
tizing builds instead of tests [41]. A popular effort to reduce
the cost of CI focuses on understanding what causes long build
durations e.g., [19], [63]. Thus, most of the approaches that
reduce the cost of CI aim at making builds faster by running
fewer test cases on each build. It is found that a lot of passing
tests could be saved in this way [39].

Some approaches use historical test failures to select tests
[13], [26]. Others run tests with a small distance to code
changes [45] or skip testing unchanged modules [61]. Re-
cently, Machalica et al. predicted test case failures using a
machine learning classifier [43]. These techniques are based
on the broader field of regression test selection (RTS) e.g.,
[21], [55], [56], [70], [71], [72], [75]. While these techniques
focus on making every build cheaper, other work addresses the
cost of CI differently: by reducing the total number of builds
that get executed. A related recent technique saves cost in CI
by not building when builds only include non-code changes
[1], [2]. They first create a rule-based selection technique
and then take advantage of the machine learning algorithm to
improve the accuracy. Then Jin and Servant propose multiple
build selection tools to reduce computational cost [29], [30],
[32], [35], [36]. They also design an evaluation across all CI-
improving techniques to compare their own benefits [33], [34].

Finally, other complementary efforts to reduce build dura-
tion have targeted speeding up the compilation process e.g.,
[5] or the initiation of testing machines e.g., [17]. Regarding
improving CD, Gallaba et al. explore ways to improve the
robustness and efficiency of CD processes [16]. Also, existing
work aims to aid product teams in improving their deployment
process through characterizing experimentation in CD [37].
Our work targets improving CI/CD workflows by improving
their flexibility and reliability so that CI/CD users are able to
build more often to detect failures earlier and deploy more
often to release their applications.

C. Infrastructure as Code

Infrastructure as Code (IaC) has been popular as automation
technologies [48]. Four topics studied in IaC-related publica-
tions are identified by existing work [53]: (i) framework/tool
for infrastructure as code; (ii) use of infrastructure as code;
(iii) empirical study related to infrastructure as code; and (iv)
testing in infrastructure as code. Guerriero et al. explore the
adoption, support and challenges of [aC and highlight the
need for more research in the field: The support provided by

10

currently available tools is still limited, and developers feel the
need for novel techniques to test and maintain [aC code [23].
Other existing work focuses on helping practitioners improve
the quality of infrastructure as code (IaC) scripts by identifying
development activities related to defective IaC scripts [52]
and avoiding insecure coding practices while developing IaC
scripts through an empirical study of security smells in [aC
scripts [54].

As another “as code” practice similar to Infrastructure as
Code, pipeline as code is introduced as a challenge for many
software engineering teams as it requires the use of many
tools and processes that all work together [38]. Existing work
introduces how a pipeline is written outside the Jenkins UI in
a file which refers to the process of pipeline as code and the
advantages of it including creating multiple pipelines using
one configuration file, conducting code review on the configu-
ration file and using version control system to keep track of its
change history [10]. Our PIPELINEASCODE tool is designed
based on the unique context of developing environment at
ByteDance and it also has some differences between what
is done in Jenkins: we allow freestyle atoms from public
atom markets and implement a more strict rule that each
configuration can only be bound with one main pipeline. We
also propose the first evaluation on pipeline as code tools to
reflect its benefits in improving the flexibility and reliability
of CI/CD pipeline system.

IX. CONCLUSIONS AND FUTURE WORK

In this article, we introduced how Continuous Integration
and Continuous Deployment pipelines work on the ByteCycle
platform at ByteDance. We also introduced our design of
PIPELINEASCODE, a CI/CD workflow management system
through configuration files. We performed two evaluation
experiments on PIPELINEASCODE to understand the charac-
teristics of the pipelines to adopt them and their influence
on the pipelines. We compared the results of the pipelines
with vs. without PIPELINEASCODE and the pipelines before
vs. after adopting PIPELINEASCODE on five metrics in both
experiments. We derived many observations from the evalu-
ation, which we then synthesized to understand the benefits
and potential limitations of adopting PIPELINEASCODE on
the CI / CD pipelines. We observed that PIPELINEASCODE is
capable of improving the reliability and flexibility of pipelines
and increasing the build frequency to maximize the ability to
detect failures at an early stage. Our findings can shed light
on the design of future tools. Finally, we discuss what we had
learned during the design of PIPELINEASCODE and the gap
between the initial design and how developers would like to
use the tool. We also provided a set of challenges or pain
points that may require future work to address. We lay out
plans to simplify the construction of the configuration files to
enhance their flexibility and practicality. In the future, we will
work on smart pipeline generation, auto-code completion of
the configuration files (such optimization decisions may have
hidden costs [31]), and the fault localization of build failures
caused by the incorrect input of the configuration files.

[1]

[3]

[4

[5

=

[6

=

[7

—

[8]

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

R. Abdalkareem, S. Mujahid, and E. Shihab. A machine learning ap-
proach to improve the detection of ci skip commits. IEEE Transactions
on Software Engineering (TSE), 2020.

R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling. Which commits
can be ci skipped? IEEE Transactions on Software Engineering, 2019.
K. Banker, D. Garrett, P. Bakkum, and S. Verch. MongoDB in action:
covers MongoDB version 3.0. Simon and Schuster, 2016.

M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke the build:
An explorative analysis of travis ci with github. In Mining Software
Repositories (MSR), 2017 IEEE/ACM 14th International Conference on,
pages 356-367. IEEE, 2017.

A. Celik, A. Knaust, A. Milicevic, and M. Gligoric. Build system
with lazy retrieval for java projects. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 643—-654. ACM, 2016.

L. Chen. Continuous delivery: Huge benefits, but challenges too. IEEE
software, 32(2):50-54, 2015.

L. Chen. Continuous delivery: overcoming adoption challenges. Journal
of Systems and Software, 128:72-86, 2017.

G. G. Claps, R. B. Svensson, and A. Aurum. On the journey to
continuous deployment: Technical and social challenges along the way.
Information and Software technology, 57:21-31, 2015.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in
github: transparency and collaboration in an open software repository.
In Proceedings of the ACM 2012 conference on computer supported
cooperative work, pages 1277-1286, 2012.

P. Dingare. Understanding pipeline as code. In CI/CD Pipeline Using
Jenkins Unleashed: Solutions While Setting Up CI/CD Processes, pages
307-338. Springer, 2022.

C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano.
Software, 33(3):94-100, 2016.

S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioriti-
zation: A family of empirical studies. [EEE transactions on software
engineering, 28(2):159-182, 2002.

S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 235-245, 2014.

W. Felidré, L. Furtado, D. A. Da Costa, B. Cartaxo, and G. Pinto.
Continuous integration theater. In Proceedings of the 13th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, page 10, 2019.

M. Fowler and M. Foemmel. Continuous integration. Thought-Works)
http:/fwww. thoughtworks. com/Continuous Integration. pdf, 122:14,
2006.

K. Gallaba. Improving the robustness and efficiency of continuous
integration and deployment. In 20719 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 619-623. IEEE,
2019.

A. Gambi, Z. Rostyslav, and S. Dustdar. Improving cloud-based contin-
uous integration environments. In Proceedings of the 37th International
Conference on Software Engineering-Volume 2, pages 797-798. IEEE
Press, 2015.

A. Gautam, S. Vishwasrao, and F. Servant. An empirical study of
activity, popularity, size, testing, and stability in continuous integration.
In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 495-498. IEEE, 2017.

T. A. Ghaleb, D. A. da Costa, and Y. Zou. An empirical study of
the long duration of continuous integration builds. Empirical Software
Engineering, pages 1-38, 2019.

GitLab. Ci cd. https://about.gitlab.com/topics/ci-cd/, 2023.
accessed 29-October-2023].

M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, pages 211—
222, 2015.

M. Golzadeh, A. Decan, and T. Mens. On the rise and fall of ci services
in github, Oct. 2021.

M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba. Adoption,
support, and challenges of infrastructure-as-code: Insights from industry.
In 2019 IEEE international conference on software maintenance and
evolution (ICSME), pages 580-589. IEEE, 2019.

Devops. Ieee

[Online;

11

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

F. Hassan and X. Wang. Change-aware build prediction model for
stall avoidance in continuous integration. In 2017 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 157-162. IEEE, 2017.

F. Hassan and X. Wang. Hirebuild: An automatic approach to history-
driven repair of build scripts. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 1078-1089. IEEE,
2018.

K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of
testing less without sacrificing quality. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages
483-493. IEEE, 2015.

M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: assurance, security, and flexibility. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 197-207. ACM, 2017.

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage,
costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 426—437. ACM, 2016.

X. Jin. Reducing cost in continuous integration with a collection of build
selection approaches. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1650-1654, 2021.

X. Jin. Cost-saving in Continuous Integration: Development, Improve-
ment, and Evaluation of Build Selection Approaches. PhD thesis,
Virginia Tech, 2022.

X. Jin and F. Servant. The hidden cost of code completion: Under-
standing the impact of the recommendation-list length on its efficiency.
In Proceedings of the 15th International conference on mining software
repositories, pages 70-73, 2018.

X.Jin and F. Servant. A cost-efficient approach to building in continuous
integration. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), pages 13-25. IEEE, 2020.

X. Jin and F. Servant. Cibench: a dataset and collection of techniques
for build and test selection and prioritization in continuous integration.
In 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pages 166—-167.
IEEE, 2021.

X. Jin and F. Servant. What helped, and what did not? an evaluation
of the strategies to improve continuous integration. In 202/ IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pages
213-225. IEEE, 2021.

X. Jin and F. Servant. Which builds are really safe to skip? maximizing
failure observation for build selection in continuous integration. Journal
of Systems and Software, 188:111292, 2022.

X. Jin and F. Servant. Hybridcisave: A combined build and test selection
approach in continuous integration. ACM Transactions on Software
Engineering and Methodology, 32(4):1-39, 2023.

K. Kevic, B. Murphy, L. Williams, and J. Beckmann. Characterizing
experimentation in continuous deployment: a case study on bing. In 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 123-132.
IEEE, 2017.

M. Labouardy. Pipeline as code: continuous delivery with Jenkins,
Kubernetes, and terraform. Simon and Schuster, 2021.

A. Labuschagne, L. Inozemtseva, and R. Holmes. Measuring the
cost of regression testing in practice: a study of java projects using
continuous integration. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 821-830, 2017.

M. Leppénen, S. Mikinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mintyld, and T. Ménnistd. The highways and country roads to contin-
uous deployment. leee software, 32(2):64-72, 2015.

J. Liang, S. Elbaum, and G. Rothermel. Redefining prioritization:
continuous prioritization for continuous integration. In Proceedings of
the 40th International Conference on Software Engineering, pages 688—
698, 2018.

Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta. Assessing test case
prioritization on real faults and mutants. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
240-251. IEEE, 2018.

M. Machalica, A. Samylkin, M. Porth, and S. Chandra. Predictive test
selection. In 2019 IEEE/ACM 41st International Conference on Software

[44]

[45]

[46]
[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Engineering: Software Engineering in Practice (ICSE-SEIP), pages 91—
100. IEEE, 2019.

D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization for
continuous regression testing: An industrial case study. In 2013 IEEE
International Conference on Software Maintenance, pages 540-543.
IEEE, 2013.

A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco. Taming google-scale continuous testing. In 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 233-242.
IEEE, 2017.

J. Micco. The state of continuous integration testing@ google. 2017.
K. Morris. Infrastructure as code: managing servers in the cloud.
O’Reilly Media, Inc.”, 2016.

K. Morris. Infrastructure as code. O’Reilly Media, 2020.

S. Mostafa, X. Wang, and T. Xie. Perfranker: prioritization of perfor-
mance regression tests for collection-intensive software. In Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 23-34, 2017.

C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, et al. The top 10 adages in
continuous deployment. /EEE Software, 34(3):86-95, 2017.

G. Pinto, M. Rebougas, and F. Castor. Inadequate testing, time pressure,
and (over) confidence: a tale of continuous integration users. In
Proceedings of the 10th International Workshop on Cooperative and
Human Aspects of Software Engineering, pages 74-77. IEEE Press,
2017.

A. Rahman, E. Farhana, and L. Williams. The ‘as code’activities:
development anti-patterns for infrastructure as code. Empirical Software
Engineering, 25:3430-3467, 2020.

A. Rahman, R. Mahdavi-Hezaveh, and L. Williams.
mapping study of infrastructure as code research.
Software Technology, 108:65-77, 2019.

A. Rahman, C. Parnin, and L. Williams. The seven sins: Security smells
in infrastructure as code scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 164-175. 1EEE,
2019.

G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on software engineering, 22(8):529-551,
1996.

G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(2):173-210, 1997.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Transactions on software engineering,
27(10):929-948, 2001.

T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm.
Continuous deployment at facebook and oanda. In Proceedings of
the 38th International Conference on software engineering companion,
pages 21-30, 2016.

M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu. Beyond continuous de-
livery: an empirical investigation of continuous deployment challenges.
In 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 111-120. IEEE, 2017.
M. Shahin, M. A. Babar, and L. Zhu. Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges
and practices. IEEE access, 5:3909-3943, 2017.

A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka.
Optimizing test placement for module-level regression testing. In 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pages 689-699. IEEE, 2017.

D. Stahl and J. Bosch. Experienced benefits of continuous integration in
industry software product development: A case study. In The 12th iasted
international conference on software engineering,(innsbruck, austria,
2013), pages 736-743, 2013.

M. Tufano, H. Sajnani, and K. Herzig. Towards predicting the impact
of software changes on building activities. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), ICSE °19, 2019.

K. Varda. Protocol buffers: Google’s data interchange format. Google
Open Source Blog, Available at least as early as Jul, 72:23, 2008.

B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik, and
M. G. van den Brand. Continuous integration in a social-coding world:

»

A systematic
Information and

12

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

Empirical evidence from github. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 401-405. IEEE, 2014.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality and
productivity outcomes relating to continuous integration in github. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 805-816. ACM, 2015.

M. Virmani. Understanding devops & bridging the gap from continuous
integration to continuous delivery. In Fifth international conference on
the innovative computing technology (intech 2015), pages 78-82. IEEE,
2015.

Y. Wen, G. Cheng, S. Deng, and J. Yin. Characterizing and synthesizing
the workflow structure of microservices in bytedance cloud. Journal of
Software: Evolution and Process, 34(8):e2467, 2022.

D. G. Widder, M. Hilton, C. Kistner, and B. Vasilescu. A conceptual
replication of continuous integration pain points in the context of travis
ci. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 647-658. ACM, 2019.

S. Yoo and M. Harman. Pareto efficient multi-objective test case
selection. In Proceedings of the 2007 international symposium on
Software testing and analysis, pages 140-150. ACM, 2007.

S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67-120, 2012.

L. Zhang. Hybrid regression test selection. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 199—
209. IEEE, 2018.

Y. Zhang, B. Vasilescu, H. Wang, and V. Filkov. One size does not fit all:
an empirical study of containerized continuous deployment workflows.
In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 295-306, 2018.

Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact
of continuous integration on other software development practices: a
large-scale empirical study. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, pages
60-71. IEEE Press, 2017.

C. Zhu, O. Legunsen, A. Shi, and M. Gligoric. A framework for
checking regression test selection tools. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 430—
441. IEEE, 2019.

Y. Zhu, E. Shihab, and P. C. Rigby. Test re-prioritization in continuous
testing environments. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 69-79. IEEE,
2018.

