
The Hidden Cost of Code Completion: Understanding the
Impact of the Recommendation-list Length on its Efficiency

Xianhao Jin
Virginia Tech

xianhao8@vt.edu

Francisco Servant
Virginia Tech

fservant@vt.edu

ABSTRACT

Automatic code completion is a useful and popular technique that

software developers use to write code more effectively and effi-

ciently. However, while the benefits of code completion are clear,

its cost is yet not well understood. We hypothesize the existence of

a hidden cost of code completion, which mostly impacts developers

when code completion techniques produce long recommendations.

We study this hidden cost of code completion by evaluating how

the length of the recommendation list affects other factors that may

cause inefficiencies in the process. We study how common long rec-

ommendations are, whether they often provide low-ranked correct

items, whether they incur longer time to be assessed, and whether

they were more prevalent when developers did not select any item

in the list. In our study, we observe evidence for all these factors,

confirming the existence of a hidden cost of code completion.

CCS CONCEPTS

• Software and its engineering→ Integrated and visual de-

velopment environments; Software maintenance tools;

KEYWORDS

Code Completion, Cost, IntelliSense

ACM Reference Format:

Xianhao Jin and Francisco Servant. 2018. The Hidden Cost of Code Com-

pletion: Understanding the Impact of the Recommendation-list Length on

its Efficiency. In MSR ’18: MSR ’18: 15th International Conference on Mining

Software Repositories , May 28–29, 2018, Gothenburg, Sweden. ACM, New

York, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/3196398.3196474

1 INTRODUCTION

Software developers rely on a large number of variables and Ap-

plication Programming Interfaces (APIs) when coding programs.

Regardless of how simple or complex these constructions are, de-

velopers cannot remember all of them, even if they need them for

their daily coding tasks. In order to support developers for remem-

bering the signature of other software artifacts, automatic code

completion tools were proposed as an extension of the IDE. Auto-

matic code completion tools provide developers, as they type, with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196474

recommendations of the signature of the code entities that they

may be intending to call, in order to improve the effectiveness an

efficiency with which developers write code.

Conventional wisdom generally recognizes the value of auto-

matic code completion techniques and tools. Code completion tools

are probably part of most software developers’ tool box. However,

little attention has been paid to scenarios in which code completion

does not fulfill its purpose and instead even interferes with the

developer’s coding tasks. While it is easy to envision successful

automatic-code-completion scenarios, these latter, less useful sce-

narios are harder to expect. Yet, for this same reason, the potential

inefficiencies of code completion may have a more serious impact

than one would expect.

In this paper, we study whether there are cases in which code

completion behaves in a suboptimal manner, incurring an efficiency

cost on developers. Our hypothesis is that the length of the recom-

mendation list will negatively impact the efficiency of code com-

pletion as it increases. In our hypothesized scenario, a developer

obtains a code-completion recommendation, but the recommen-

dation list is so long that it takes a long time to inspect it, due

to the many items that have to be assessed before reaching the

correct one. Furthermore, this scenario may become worse if the

recommendation list is so long that the developer gives up after

some time investigating it and ends up not selecting any item —

therefore not getting any benefit from code completion and instead

having wasted time.

We perform an empirical study over the dataset provided for the

2018MSRMining challenge [4], which contains the IDE interactions

for a set of real-world developers. In our study, we evaluate whether

our hypothesized scenario takes place, and whether it incurs an

efficiency cost for developers using code completion. Since we

expect the length of the recommendation list to be a driving factor

for the appearance of our hypothesized suboptimal scenario, we

study the impact of the recommendation-list length on the efficiency

of code completion.

In the results for our study, we found that in our studied dataset,

the code completion technique often produced large recommenda-

tion lists of 250 items, that larger recommendation lists required

longer explorations until the right item is found, that such explo-

rations take longer for longer lists, and that the cases in which

the developers did not choose anything from the recommendation

list were also more prevalent for longer recommendation lists. In

other words, in many cases, code completion recommendations

were on the long end of the spectrum, had an efficiency cost for

developers, and in many of those cases they provided no benefit

for the developers. These results provide evidence for the fact that

there is indeed a hidden cost to code completion that should be

addressed by future code completion approaches.

70

2018 ACM/IEEE 15th International Conference on Mining Software Repositories

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:00:37 UTC from IEEE Xplore. Restrictions apply.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Xianhao Jin and Francisco Servant

2 RELATEDWORK

Many techniques have been proposed in the research literature to

improve the accuracy of automatic code completion. For example,

Proksch et al. extend an existing approach — the Best Matching

Neighbor (BMN) algorithm — by adding context information, and

their results show that their technique improved the prediction

quality [6]. Similarly, Asaduzzaman et al. also proposed a novel

technique called CSCC (Context Sensitive Code Completion) for

improving the performance of API method call completion [1]. Ray-

chev et al.managed to take advantage of statistical language models

to improve accuracy [7]. Another related area of research aims to

improve the quality of the datasets with which code completion

is evaluated. For example, Proksch et al. found that an evolving

context that is often observed in practice has a major effect on the

prediction quality of recommender systems, but is not commonly

reflected in artificial evaluations[5]. Romain Robbes et al. tried

to improve code completion based on recorded program histories

defining a benchmarking procedure measuring the accuracy of a

code completion engine[8]. Other researchers, Ghafari and Moradi,

built a framework to help the community to conduct systematic

studies to gain insight into how much code recommendation has

so far achieved, in both research and practice[2].

To the extent of our knowledge, our study is the first of its kind

with the goal of empirically understanding the efficiency cost of

suboptimal recommendations in code completion.

3 RESEARCH QUESTIONS

RQ1: How common are different recommendation lengths?

The answer to this research question will allow us to adjust our

expectations for how often the recommendations produced in the

field end up in the longer end of the spectrum. This will also give us

a sense of how common “potentially costly” recommendations are.

If the produced recommendation lists often fall in the shorter end

of the spectrum, then the cost of code completion for developers

would be small, since “short” recommendation lists can be assessed

efficiently. Otherwise, if “long” recommendation lists are the norm,

then developers are actually wasting valuable time in assessing

these lists, and there is an efficiency cost to using code completion.

RQ2: How does the recommendation length affect the rank

of the correct recommendation? The answer to this research

question will allow us to determine whether increasing lengths of

the recommendation-list decrease the accuracy of code completion.

This factor is interesting to study because less accurate recommen-

dation lists — containing the correct item in a low rank — take

longer to investigate and are therefore more costly. Even if long

recommendations were common, their cost would not be very high

if they recommend the right item at the top positions of the list. In

other words, if the recommendation is very accurate, the length of

the recommendation list potentially does not matter. Otherwise, if

long recommendation lists are the norm and the accuracy of those

long lists is low, then we hypothesize that developers will waste

time assessing them until they identify the correct item inside.

RQ3: How does the recommendation length affect the time

spent evaluating the recommendation? The answer to this re-

search question will allow us to adjust our expectations of how long

it takes to evaluate the different lengths of the recommendation

lists. Regardless of the recommendation-list length and the ranking

of the right item, developers may be very fast to assess recom-

mendation lists, which would reduce the cost of code completion.

Otherwise, observing that developers indeed take time to assess

the code-completion recommendations more strongly validate the

fact that there is a cost to code completion.

RQ4: How does the recommendation length affect the likeli-

hood of the developer making a selection? The answer to this

research question will allow us to understand how often recom-

mendation lists are so costly to assess — for their low accuracy,

high length, or any other factor — that developers decide not to

use them and do not make a selection from the recommendation

list. Understanding how common this event is will also help us

the impact of the most costly aspect of our hypothesized scenario:

spending time assessing the recommendation list, but ultimately

desisting and getting no value from it.

4 METHOD

DataPreprocessing.Weanalyze theMSRMining Challenge dataset

[4] and extract from it all the events that correspond to code comple-

tion. This dataset was created by capturing the IDE usage of many

software developers that used Visual Studio. Thus, the specific code-

completion engine that we studied in this paper is IntelliSense. Next,

we explain how we process code-completion events to study each

of our individual research questions.

RQ1: How common are different recommendation lengths?

To obtain the length of the recommendation list, we extract the

proposal list information from the code completion event. Then, we

plot the median percentage of code-completion recommendations

that were included in the dataset that had each specific length. Our

goal with this plot is to understand the relative prevalence of each

individual recommendation-list length.

RQ2: How does the recommendation length affect the rank

of the correct recommendation? For this question, we use the

events that we extracted for the former research question. However,

for this case, we remove those cases from the dataset for which

the developer made no selection, or when there was an empty

selection or multiple selections. We removed these latter two cases

because we could not explain them. Then, for each remaining code

completion event, we assessed the right item from the list as the item

that the developer selected. We measure the rank of the selected

item within the list. Finally, we plot the median position in which

the right item was recommended for a recommendation-list length.

RQ3: How does the recommendation length affect the time

spent evaluating the recommendation? For this research ques-

tion, we analyze the same code completion events as for RQ2. We

measure the “SelectedAfter” object from each code completion

event to represent the number of seconds that the recommendation

list was shown until the developer selected something. Then, we

plot the median “SelectedAfter” time for each recommendation-list

length, to understand the time that developers take to evaluate

recommendations, and whether the recommendation length has

any impact on it.

71

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:00:37 UTC from IEEE Xplore. Restrictions apply.

The Hidden Cost of Code Completion MSR ’18, May 28–29, 2018, Gothenburg, Sweden

0%

5%

10%

15%

20%

25%

Figure 1: Percentage of completion recommendations

RQ4: How does the recommendation length affect the like-

lihood of the developer making a selection? This time we ana-

lyze all the code completion events (regardless of whether the devel-

oper selected something or not). Again, we filter out the cases when

multiple items were selected, because we could not explain them.

Thus, our analyzed code completion events may only either have

one item or no items selected. Finally, for each recommendation-list

length, we plot the percentage of recommendations of that length

for which the developer did not make a selection.

5 RESULTS

5.1 RQ1: How common are different

recommendation lengths?

Figure 1 shows the number of recommendations provided by In-

telliSense for each recommendation-list length. The X axis lists

recommendation-list lengths 1–250 — 250 is the maximum length

that IntelliSense used. The Y axis represents the percentage of rec-

ommendations provided by IntelliSense for a given recommendation-

list length. The mean value is 50.37, median value is 4, the mode

is 1 and the standard deviation is 87.95. In this figure, we can ob-

serve that the most common recommendation list length was 1

(20% of cases), with each subsequent length being less and less

common. Furthermore, most recommendation-list lengths stayed

in the lower-end of the length spectrum. Still, it is also worth noting

that a large number of recommendations had a large length of 250 –

around 16% of recommendations. In fact, 250 was the second most-

common recommendation-list length. This observation tells us that,

while IntelliSense does a great job of frequently providing short rec-

ommendations — many with length lower than 10, it still produces

a large number of recommendations of large lengths — with length

250 being extremely frequent. As a consequence, the cases in which

we hypothesized that developers could be losing inefficiency due

to long recommendation lists are much more frequent than they

could have been expected.

5.2 RQ2: How does the recommendation length

affect the rank of the correct

recommendation?

Figure 2 shows the selected item’s position within the recommen-

dation list provided by IntelliSense for each recommendation-list

Figure 2: Median position of the correct item

length. The X axis lists recommendation-list lengths, and the Y

axis represents the median position of the selected items within

a recommendation list for a given recommendation-list length. In

this figure, we can observe that for short recommendations, the

position of the right item within the recommendation stays at a

low number. However, the position of the right item within the

recommendation list increases rather steadily as the length of the

recommendation-list grows. This observation again shows that

there are many recommendations for which IntelliSense does a

great job, i.e., it produces many short recommendations where the

correct item is highly-ranked. However, there are still many rec-

ommendations for which the correct item can only be found after

assessing a large number of other items. In fact, for the second

most common recommendation length (250), the median position is

around 15, which is still pretty high. As a consequence, there were

a large number of recommendations for which the right item was

recommended at a rather high position (higher than 10). This obser-

vationmeans that in many cases developers will have to spend some

time assessing multiple candidates before obtaining the benefit of

code completion.

5.3 RQ3: How does the recommendation length

affect the time spent evaluating the

recommendation?

Figure 3 shows the time spent evaluating the recommendation for

each recommendation-list length. The Y axis now represents the

median value of the time spent evaluating the recommendation

for a given recommendation-list length. In this figure, we can ob-

serve that the time spent evaluating the recommendation is short

for those recommendation-lists with a short length, and that it in-

creases with the recommendation-list length. While this increasing

trend is not very steep, Figure 3 also shows that for the majority

of recommendation lengths, there is some time that needs to be

spent assessing the recommendations. We should note that, even

though each individual time reported in this figure is low, it accumu-

lates very quickly over time, because developers constantly obtain

code-completion recommendations, potentially having to assess a

large number of them daily. This observation validates our findings

in RQ2, since we observed that increasing recommendation-list

lengths also increased the position in which the right item was

recommended. Such an increased position would involve longer

time by developers inspecting the recommendation, which is what

72

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:00:37 UTC from IEEE Xplore. Restrictions apply.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Xianhao Jin and Francisco Servant

Figure 3: Median time spent inspecting the list

we observe for RQ3. This observation also provides evidence for

the cases of inefficiency that we hypothesized — in which as rec-

ommendation lengths grow, developers developers spend longer

time evaluating them.

5.4 RQ4: How does the recommendation length

affect the likelihood of the developer

making a selection?

Figure 4 shows the percentage of recommendations for which the

developer did not select any item, given a recommendation length.

In this figure, we can observe an upward trend in the percentage of

recommendations for which no selection was made, which grows

with the recommendation-list length. A second observation is that

the percentage of recommendations with no selection is very high

for most recommendation lengths — with the exception of some

cases for which we did not have many data points (as can be ob-

served in Figure 1). The reason for this second observation is that

IntelliSense works automatically — it provides recommendations

without developers needing to request them, so it is natural that

a large number of them would be automatically ignored. For that

reason, the important observation is the upwards trend in the graph.

This observation tells us that as the recommendation-list length

grew longer, developers were less and less inclined to select some-

thing from it. Thus, long recommendations were more likely to

leave developers obtaining no benefit from code completion for

not having selected anything. This final observation also provides

evidence for our hypothesized scenario in which developers not

only may be spending time assessing large recommendations, they

are also not obtaining its benefit — no selected recommendation —

in many cases as well.

6 CONCLUSION AND FUTUREWORK

We hypothesized that there may be a hidden cost to code comple-

tion, i.e., cases in which code completion may not be as helpful as

we could intuitively envision. We hypothesize that, in such cases,

developers may be spending time assessing long recommendations

in which the right item is only found after assessing many items,

and that they may eventually get discouraged and not choose any-

thing from the recommendation, ultimately losing the benefit of

code completion. We performed an empirical study over a dataset

of code completion events, in which we observed evidence for all

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4: Recommendations inwhich no selectionwasmade

the elements of our hypothesis. In many cases, code completion:

(RQ1) provided large recommendations, (RQ2) that contained the

right item far down its list, (RQ3) which took increasing time to

inspect with increasing length, (RQ4) and provided recommenda-

tions for which developers did not end up making a selection. In

the light of this evidence, we conclude that the hidden cost of code

completion grants further study in future work. In the future, we

will study other code completion algorithms (besides IntelliSense)

to learn whether our findings will be replicated for them. We will

also perform human studies to better understand the qualitative

aspects of the cost of code completion, e.g., barriers for adoption or

frequent usage that may not be intuitive from studying a dataset —

e.g., we anecdotally heard that some developers trigger IntelliSense

just to learn about APIs, which is a behavior that would be hard to

identify by only observing the data. Finally, we provide a replication

package for this study [3].

REFERENCES
[1] Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and Daqing

Hou. 2014. Cscc: Simple, efficient, context sensitive code completion. In Software
Maintenance and Evolution (ICSME), 2014 IEEE International Conference on. IEEE,
71–80.

[2] Mohammad Ghafari and HamidrezaMoradi. 2017. A framework for classifying and
comparing source code recommendation systems. In Software Analysis, Evolution
and Reengineering (SANER), 2017 IEEE 24th International Conference on. IEEE,
555–556.

[3] Xianhao Jin and Francisco Servant. 2018. The Hidden Cost of Code Completion:
Understanding the Impact of the Recommendation-list Length on its Efficiency.
(March 2018). https://doi.org/10.5281/zenodo.1199697

[4] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A
General Dataset for Empirical Studies on In-IDE Activities of Software Developers.
In Proceedings of the 15th Working Conference on Mining Software Repositories.

[5] Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. 2016. Evaluating
the evaluations of code recommender systems: A reality check. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 111–121.

[6] Sebastian Proksch, Johannes Lerch, and Mira Mezini. 2015. Intelligent code com-
pletion with Bayesian networks. ACM Transactions on Software Engineering and
Methodology (TOSEM) 25, 1 (2015), 3.

[7] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In Acm Sigplan Notices, Vol. 49. ACM, 419–428.

[8] Romain Robbes and Michele Lanza. 2010. Improving code completion with pro-
gram history. Automated Software Engineering 17, 2 (2010), 181–212.

73

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:00:37 UTC from IEEE Xplore. Restrictions apply.

