
2
0
2

1
 I

E
E

E
/A

C
M

 4
3

rd
 I

n
te

rn
a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
ar

e
E

n
g

in
e
e
ri

n
g

 (
IC

S
E

)
| 9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1
 I

E
E

E
 |

D
O

I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

0
3

1

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

What helped, and what did not? An Evaluation of

the Strategies to Improve Continuous Integration

Xianhao Jin
Computer Science

Virginia Tech

xianhao8 @vt.edu

Francisco Servant
Computer Science

Virginia Tech

fservant@vt.edu

Abstract—Continuous integration (CI) is a widely used practice
in modern software engineering. Unfortunately, it is also an
expensive practice — Google and Mozilla estimate their CI
systems in millions of dollars. There are a number of techniques
and tools designed to or having the potential to save the cost of
CI or expand its benefit - reducing time to feedback. However,
their benefits in some dimensions may also result in drawbacks
in others. They may also be beneficial in other scenarios where
they are not designed to help. In this paper, we perform the first
exhaustive comparison of techniques to improve CI, evaluating
14 variants of 10 techniques using selection and prioritization
strategies on build and test granularity. We evaluate their
strengths and weaknesses with 10 different cost and time-to-
feedback saving metrics on 100 real-world projects. We analyze
the results of all techniques to understand the design decisions
that helped different dimensions of benefit. We also synthesized
those results to lay out a series of recommendations for the
development of future research techniques to advance this area.

Index Terms—continuous integration, software maintenance,
empirical software engineering

I. In t r o d u c t i o n

Continuous Integration (CI) is a software development prac-

tice by which developers integrate code into a shared repos-

itory several times a day [13]. However, CI gains adoption

in practice, difficulties e.g., [43] and pain points e.g., [61]

have been discovered about it. As software companies adopt

CI, they execute builds for many of projects, and they do so

very frequently. As workload increases, two main problems

appear: (1) the time to receive feedback from the build process

increases, as software builds often outnumber the available

computational resources — having to wait in build queues,

and (2) the computational cost of running builds also becomes

very high. Previous studies e.g., [38] have highlighted the long

time that developers have to wait to receive feedback about

their builds. For example, at Google, developers must wait 45

minutes to 9 hours to receive testing results [33]. Even just

the dependency-retrieval step of CI can take up to an hour per

build [8]. Regarding the high cost of running builds, that is

also highlighted in other studies [21], [23], [24], [43], [61].

The cost of CI reaches millions of dollars, e.g., at Google

[24] and Microsoft [2 1]. While other problems exist for CI,

we focus on these two because they are the ones that most

existing techniques have focused on addressing. They are also

interrelated, since cost-reduction techniques may also reduce

time-to-feedback — e.g., skipping some tests may cause other

tests to fail earlier.

Multiple techniques have been proposed to improve CI.

Most of them have the goal of reducing either its time-to-
feedback or its computational cost. All such techniques con-

sider the observation of build failures to be more valuable than

build passes, because failures provide actionable feedback, i.e.,
they point to a problem that needs to be addressed. Time-
to-feedback-reduction techniques aim to observe failures
earlier — by prioritizing failing executions over passing

ones. These techniques may operate in two different levels

of granularity, by prioritizing: test executions e.g., [1 1], or

build executions e.g., [33]. Computational-cost-reduction
techniques aim to observe failures only — by selectively
executing failing builds only, saving the cost of executing

passing ones. They also may operate at two different levels

of granularity, selecting: test executions e.g., [36], or build

executions e.g., [2].

To the extent of our knowledge, the existing techniques

to improve CI have been evaluated under different settings,

making it hard to compare them. Previous studies used differ-

ent software projects, different metrics, and rarely compared

one technique to another. However, we expect that different

choices of goal, granularity, and technique design will bring

different trade-offs. For example, cost-reduction techniques at

build-granularity may be more risky than a test-granularity

one, i.e., it may save more cost when it skips all the tests in

a build, but it may also make more mistakes if it skips many

failing tests in a build. However, the opposite may be true,

if test-granularity cost-reduction techniques also skip a large

ratio of full builds (i.e., all the tests in the build). On another

example, test-selection techniques may be a good alternative to

test-prioritization techniques that also saves cost as an added

benefit, or they may instead delay the observation of test

failures if they mispredict too many of them. To the best of

our knowledge, how these trade-offs manifest in practice is

still mostly unknown. Empirically understanding these trade-

offs will have valuable practical implications for the design of

future techniques and for practitioners adopting them.

In this paper, we perform the first evaluation of the existing

strategies to improve CI. We aim to understand the trade-

offs between these techniques for three dimensions: (D1)

computational-cost reduction, (D2) missed failure observation,

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00031

213

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

and (D3) early feedback.

For this goal, we performed a large-scale evaluation. We

replicated and evaluated all the existing 10 Cl-improving

techniques from the research literature, representing the two

goals (time-to-feedback and computational-cost reduction) and

the two levels of granularity (build-level and test-level) for

which such techniques have been proposed. We evaluated these

techniques under the same settings, using the state-of-the-art

dataset of continuous-integration data: TravisTorrent [5]. To

be able to study all techniques, we extended TravisTorrent in

multiple ways, mining additional Travis logs, Github commits,

and building dependency graphs for all our studied projects.

Finally, we measured the effectiveness of all techniques with

1 0 metrics in 3 dimensions. We included every metric that any

previous evaluation of our studied techniques used (7), refitted

2 others and designed an additional one.

We analyzed the results obtained by all techniques on

all metrics across all 3 dimensions, and we synthesized our

observations, to understand which design decisions helped and

which ones did not for each dimension. Finally, we further

reflect on our results to provide a wide set of recommendations

for the design of future techniques in this research area.

The main contributions of this paper are: (1) the first com-

prehensive evaluation of CI-improving techniques; (2) a col-

lection of metrics to measure the performance of CI-improving

techniques over various dimensions; (3) an extended Travis

Torrent dataset with: detailed test and commit, and dependen-

cies information; (4) the replication of 14 variants of 10 CI-

improving techniques; (5) evidence for researchers to design

future CI-improving techniques.

II. Ap p r o a c h e s t o Im p r o v e Co n t i n u o u s I n t e g r a t i o n

We summarize technique families in Table I and discuss

each technique in detail in §III-C. Figure 1 depicts a non-

interventional example timeline of builds, a timeline in which

a build-selection technique is applied, a timeline produced

by build-prioritization technique, a timeline where a test-

selection technique is applied, and a timeline with applying

a test-prioritization approach. The example timeline shows a

chronological numbered sequence of builds in CI. Each build

is made up of at least one test. We depict each test suite as a

rectangle with a test number (e.g., t1). Failing tests are then

highlighted in gray. The length of the rectangle refers to the

time duration for the test to be executed. We depict skipped

tests with a dashed rectangle. In the most ideal cost-saving

scenario, all of the passing tests would be skipped and all of

the failing tests would be observed as soon as possible.

A. Computational-cost Reduction
1) Test-level granularity: Test-selection techniques [18],

[21], [36], [38], [55], [64], [6 6] aim at automatically detect

and label tests that are not going to fail. These test-level

approaches collect information from test history and project

dependency along with the current commit and use some

heuristic models to detect failing tests and skip the others.

Figure 1 also illustrates how this type of techniques works

in the simulation timeline. After a test-selection approach is

activated, it selects a subset of tests (e.g., t2 in build #2, t4

in build #4) that it predicts to have a possibility to fail and

decides to skip the others (e.g., t3 in build #1, t1 in build #5).

For those tests that are not selected in the timeline and get

skipped, we depict them as dashed rectangles. In this paper,

we consider it can skip some builds when it selects no test in

those builds.

2) Build-level granularity: Build-selection techniques [1],

[2], [20], [27], [42] aim at automatically detect and label

commits and builds that can be CI skipped. Some approaches

[20], [27], [42] try to detect failing builds and skip those

passing builds to achieve cost-saving. Others [1], [2] aim at

identifying commits that can be CI skipped. Figure 1 illustrates

how they work in the simulation timeline. As a build-level

technique, when build-selection approach decides to skip a

build (e.g., build #2, #4, #6), normally it skips all of the tests

in that build. The inner test sequence is not changed and all

of tests are run in an executed build.

B. Time-to-feedback Reduction
1) Test-level granularity: Test-prioritization techniques

[11], [35], [37], [40], [57] try to give high priority to tests that

are predicted to be failed so that developers could be informed

in a shorter time. This family of approaches normally rearrange

the execution order of tests within a build to make predicted-

to-fail tests run earlier by analyzing information such as test

failing history and test context. Figure 1 depicts an example of

how this type of techniques works in the simulation timeline.

With a test-level approach being activated, the CI system gives

different tests different priorities and firstly executes those tests

with a higher priority (e.g., t4 in build #2, t2 in build #3) as

well as delays low-priority tests (e.g., t1 in build #3, t2 in

build #6). The sequence of test executions in this timeline gets

rearranged and the start-time for tests that are more likely to

fail move ahead in time. Also, all tests are executed at last.

2) Build-level granularity: Build-prioritization techniques

[33] aim at automatically prioritizes commits that are waiting

for being executed. They favor builds with a larger percentage

of test suites that have been found to fail recently and builds

including test suites that have not been executed recently as an

alternative path. Figure 1 also shows how this family of tech-

niques works in the simulation timeline. Build-prioritization

techniques will only be activated when there is a collision

of builds (i.e., there are multiple builds waiting to occupy

the limited resource). The technique is build-level so it will

not change the inner order of the test executions and it will

normally change the sequence of tests across builds when the

approach is activated (e.g., build #4, #5). None of tests become

dashed in this timeline because they all eventually execute.

III. Re s e a r c h Me t h o d

In this paper, we replicated and evaluated 14 variants of

10 CI-improving techniques, covering their two goals (time-

to-feedback and computational-cost reduction) and their two

levels of granularity (build-level and test-level) with 1 perfect

214

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

Build 1 Build 2 Build 3 Build 4 Build 6
No-Intervention

Timeline

Test-prioritization
Timeline “

Mr a
o -a

Build-prioritization_
Timeline

t1 t2 t3 | t 2 t4 t1 | t 2 t3 t4 t1 t2 t4

Build 1 Build 2 Build 3 Build 4
t1 t2 t3 t2 | t 2 t3 t4 t1 t1 t2

Build 5

Build 5
t1

Build 1 Build 2
t1 t2 t3

Build 3
t2 t4 t1 | t 2 t3 t4

Build 5
t1

Build 4
t1 t2 t4

t1 t2 t3 t4

Build 6
t3 t4 t1 t2

Build 6
t1 t2 t3 t4

Test-selection
Timeline

Build 1 Build 2 Build 3 Build 4 Build 5 Build 6
t1 t2 t 3 r t2 t4 t1 t2 t3 t4 t1 t2 t 4 — !t1:--- [t1 t2 t3 t4

Build-selection
Timeline

Build 1
t1 t2 t3

Build 2
t2 t4 -

Build 3
t1 | t 2 t3 t4

...Bu.ii.d .4 ..,
t1 t2 t4

Build 5Bu ild_ 6 ,
t1 t2 t3 1 4 -

Fig. 1: Example timeline. Failing tests in gray. Build-selection runs builds fully when it predicts a failing build. Test-selection

runs builds partially (for tests that would fail). Build-prioritization changes the build sequence. Test-prioritization changes the

test sequence within a build.

technique for the ideal timeline. We evaluate them over 1 0 0

software projects in TravisTorrent, which we extended to be

able to run all such kinds of techniques.

ou r goal is to understand the trade-offs between existing

CI-improving techniques, and between the metrics that have

been used to evaluate them. We perform 2 empirical studies

to analyze these trade-offs for the following 3 dimensions of

CI-improving techniques, using 1 0 metrics. We only include

selection techniques in Empirical Study 1 since prioritization

techniques have no power in cost saving by nature. We involve

selection and prioritization techniques in Empirical Study 2

because both of them can have an impact on fault detection,

e.g., wrongly-skipped failing builds by selection approaches

can cause delay in fault detection.

Empirical Study 1: Cost Saving
D1: Computational-cost Reduction
D2: Missed Failure Observation

Empirical Study 2: Time-to-feedback Reduction
D3: Early Feedback
For each dimension, we study:

RQ1: What design decisions helped this dimension?
RQ2: What design decisions did not help this dimension?

A. Data Set
We perform our study over the Travis Torrent dataset [4],

which includes 1,359 projects (402 Java projects and 898 Ruby

projects) with data for 2,640,825 build instances. We remove

“toy projects” from the data set by studying those that are

more than one year old, and that have at least 2 0 0 builds and

at least 1 0 0 0 lines of source code, which is a criteria applied

in multiple other works [42], [25]. To be able to evaluate test-

granularity techniques, we also filter out those projects whose

build logs do not contain any test information. We focused our

study on builds with passing or failing result, rather than error

or canceled — since they can be exceptions or may happen

during the initialization and get aborted immediately before

the real build starts. Besides, in Travis a single push or pull-

request can trigger a build with multiple jobs, and each job

corresponds to a configuration of the building step. We did a

preliminary investigation of these builds and found that these

jobs with the same build identifier normally share the same

build result and build duration. Thus, as many existing papers

have done [14], [44], [26], we considered these jobs as a single

build. After this filtering process, we obtained 82,427 builds

from 100 projects (13,464 failing builds).

To be able to execute all our studied techniques, we ex-

tended the information in TravisTorrent of these 100 projects

in multiple ways. First of all, we needed to know the duration

of each individual test for the comparison and replication.

Also, to replicate some techniques, e.g., [21], [11], we needed

to capture the historical failure ratio for each individual test.

To obtain these information, we built scripts to download

the raw build logs from Travis and parse them to extract all

of the information about test executions, such as test name,

duration and outcome. Some techniques, e.g., [36], [2], require

additional information that TravisTorrent does not provide for

builds, such as the content of commit messages, changed

source lines and changed file names. For that, we also mined

additional information about commits in the projects’ code

repositories through Github. Then, we matched each test with

its corresponding test file in the project. Finally, to be able to

run other techniques, e.g., [18], [36], we built a dependency

graph for the source code of each project using a static code

analysis tool (Scitool understand [48]) to determine the paths

between the source files and test files.

B. Evaluation Process
We evaluate the techniques in a real-world scenario, to

understand as best as possible the behavior that the techniques

would show in practice. We take two measures for that.

First, we respect the original chronological order of build

and test operations when training techniques. We achieve that

by using an 1 1 -fold, chronological variant of cross-validation.

For each project, we split its chronological timeline into 11

folds. We use the first chronological fold only for testing, and

we iteratively test the other 10 folds. For each testing fold,

215

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Studied Techniques. IV. Em p i r i c a l St u d y 1: Co s t Sa v i n g

Goal Approach Granularity Studied Technique
Time to

Feed-

back

Prioritization
Test

PT Marijan13 [37]

PT Elbaum14 [11]

PT_Thomas14 [57]

Build PB_Liang18 [32]

Comput-

ational

Cost

Selection

Test

ST Gligoric15 [18]

ST Herzig15 [21]

ST Mach19 [36]

Build

SB Hassan17 [20]

SB Abd19 [2]

SB Jin20 [27]

we train on all the folds that precede it chronologically. This

approach has been used in previous works e.g., [7], [52] to

avoid training with information that would not be available in

practice, i.e., it happens in the future.

We follow this approach for all the techniques based on

machine learning, e.g., [36]. For techniques that do not require

training, e.g., [2], we simply execute them over the same last

10 folds. For techniques that train on data from other projects,

i.e., for cross-project technique variants, we also executed

them over the same last-1 0 -fold timeline — and we divided

them into 1 0 project folds to do cross-project cross-validation,

i.e., for each project, the technique is trained on 90 other

projects and tested on its last 1 0 fold data.

Second, we respect the real-world availability of informa-

tion. That is, for selection-based techniques, when a build or

test is skipped, the technique will not know its outcome. For

techniques that rely on the last build or test outcome e.g., [19],

we only inform them of the outcome of the last executed build

or test. Additionally, when builds are skipped, we accumulate

their code changes into the subsequent build.

C. Replicated Techniques

We replicated and studied all the techniques that have been

proposed to improve CI by reducing the time to feedback or re-

ducing its cost. In addition to these, there are other techniques

that were proposed before CI and that could also be applied

for these two goals: test prioritization techniques, and test

selection techniques. Therefore, we also replicated and studied

a state-of-the-art technique in each of these two categories that

were not originally proposed for CI. We summarize all our

studied techniques in Table I.

In total, we studied 10 techniques, across two goals (re-

ducing time to feedback and cost) and two granularities (test

and build levels). Since we also studied multiple variants of

some techniques, our evaluation included 14 total technique

variants. To provide a reference point, we also studied a perfect

technique: Perfect Technique. It achieves the goal of each

metric perfectly — it predicts which tests or builds will fail

with 1 0 0 % accuracy, prioritizing or selecting them perfectly.

We include the detailed description for each technique in

§IV-A and §V-A.

A. Studied Techniques
1) Test-selection Techniques: We replicated all the test-

selection techniques that were proposed for improving CI:

ST_Mach19 [36] and ST_Herzig15 [21]. To provide even more

context for our study, we also evaluate a state-of-the-art test-

selection technique: ST_Gligoric15 [18] — since test-selection

techniques have also been proposed outside the context of CI,

e.g., [64], [18], [63], [62], [46], [45].

ST_Gligoric15 [18] skips tests that cannot reach the changed

files, by tracking dynamic dependencies of tests on files. A test

can be skipped in the new revision if none of its dependent files

changed. The rationale is that tests that cannot reach changed

files cannot detect faults in them.

ST_Herzig15 [21] is based on a cost model, which dynam-

ically skips tests when the expected cost of running the test

exceeds the expected cost of removing it, considering both

the machine cost and human inspection cost [3], [22]. This

technique tends to skip tests that mostly passed in the past or

that have long runtime.

ST_Mach19 [36] proposes a Machine Learning algorithm

with combined features of commit changes and test historical

information. We studied two variants of it: one is trained in

the past builds within the same project in which it is applied

(ST_Mach19_W), and the other is trained in the builds of

different software projects than the one in which it will be

applied (ST_Mach19_C). It uses the following features: file

extensions, change history, failure rates, project name, number

of tests and minimal distance.

2) Build-selection Techniques: We then replicated all build-

selection techniques that jave been proposed for improving

CI: SB_Abd19 [2], and SB_Jin20 [27]. To provide even more

context for our study, we also replicated a state-of-the-art

build-prediction technique: SB_Hassan17 [20].

SB_Hassan17 [20] predicts every build’s outcome based on

the information from last build. Builds can be skipped when

they are predicted to pass. In our study, information from the

previous build is blinded if the build does not get executed.

We study two variants of this technique (SB_Hassan17_W and

SB_Hassan17_C) as we did for ST_Mach19.
SB Abd19 [2] uses a rule-based approach to skip commits

that only have safe changes, e.g., changes on configuration

or document files. This technique is expected to capture most

failing builds since it only skips builds considered safe to skip.

SB_Jin20 [27] aims at saving CI cost by skipping passing

builds. Their strategy is to capture the first failing build in

a subsequence of failing builds and continuously build until

a passing build appears. We replicated this technique under

the configuration that provided the optimal effectiveness [27].

We studied three variants of this technique: SB_Jin20_W &

SB_Jin20_C as we did previously, and also a rule-of-thumb

variant (SB_Jin20_S) that skips builds with < 4 changed files.

B. D1: Computational-cost Reduction
We studied four metrics for D 1 . We plot the result of each

metric in a box plot where each box represents the distribution

216

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

of values for all the studied projects.

1) Studied Metrics: Build time saved measures the propor-

tion of total build time that is skipped among all build time

per project. It was covered in SB_Abd19 [2].

Test time saved measures the same as the previous metric

but in terms of test time. The previous work ST_Gligoric15

[18] used this metric in its evaluation. It shows how much

time applying a technique could save during the phase of test

executions.

Builds number saved measures the proportion of builds that

are saved among all builds. It was studied by SB_Abd19 [2]

and SB_Jin20 [27]. It represents how many resources could

be saved as the number of builds.

Tests number saved measures the same as the previous metric

but in term of tests. Previous papers [18], [21] studied this

metric. It represents how many resources could be saved

during test executions.

2) Analysis o f Results: Comparing Metrics. When we

compare the techniques’ test number vs. test time saved, most

of them saved a very similar ratio of test time than ratio of

tests (except ST_Herzig15).

When comparing build number vs. build time, build-

granularity techniques saved a very similar ratio of build

time as of builds. Also, test-granularity techniques saved a

larger ratio of build time than of builds. This means that test-

granularity techniques save build time when they skip builds

partially — when they skipped some of their tests.

When comparing test number vs. build number, build-

granularity techniques saved a very similar ratio of builds

and tests. Also, test-granularity techniques saved a much

lower ratio of builds than of tests — some dramatically

so (ST_Herzig15 and ST_Mach19_C). This means that test-

granularity techniques saved a low ratio of full builds.

When comparing test time vs. build time, build-granularity

techniques saved very similar ratios of test time and build

time. Also, test-granularity techniques saved a much lower

ratio of build time than of test time. This observation extends

our earlier one: every build that these techniques did not skip

fully, and thus did not skip its build-preparation time, reduced

their ability to save build time to an important extent.

Comparing Granularities. By comparing test vs. build-

granularity techniques, build-granularity techniques gener-

ally saved higher build-time cost — except for SB_Abd19.

Build-granularity techniques have the advantage of skipping

both test-execution and build-preparation time, while test-

granularity techniques have the advantage of skipping tests

spread over many builds, not only on those that get fully

skipped. Our observation implies that skipping full builds was

a better strategy for saving cost.

Comparing Techniques. We first observed that

SB_Mach19_C and SB_Jin20_C skipped fewer builds

than their counterparts that were trained only with data

within the same project (SB_Mach19_W, SB_Jin20_W).

After having been trained with a more diverse set of build

and tests (across many projects), these techniques became

less confident to skip them. ST_Herzig15 saved very low

ratio of build time despite saving a large ratio of tests. This

is because it very rarely skips tests that failed many times

in the past — regardless of the code changes in the build.

So, within each build, it very rarely skipped the tests with

the most past failures — thus very rarely skipping builds

fully. SB_Abd19 saved a median 21% build time, which is

a relatively high amount, considering that it only skipped

builds with non-executable changes, e.g., that only changed

formatting or comments. ST_Mach19_W and ST_Gligoric15

skipped a relatively high ratio of build time (competitively

with build selection techniques) because they skipped many

full builds. This is because they analyze the relationship

between code changes and tests inside a build. ST_Gligoric15

skips all tests that cannot execute the code changes, and

ST_Mach19_W considers the distance between the changes

and the tests in its predictor. This allows both techniques

to fully skip those builds in which no test can execute the

code changes — i.e., when only non-executable code was

changed, or when no tests exist to execute the changes.

SB_Jin20_W and SB_Jin20_S saved high ratios of build

time, since they both focused on skipping full builds. While

SB_Jin20_S provided higher savings, we expect it to also

skip a higher ratio of skipped failing builds (see §IV-C) —

SB_Jin20_S simply skips builds with <4 commits. Finally,

SB_Hassan17_W and SB_Hassan17_C skipped too much

build time (higher than the perfect baseline). This is because

they mostly rely on the status of the previous build, which is

unknown if skipped. So, as soon as they observe a passing

build, they recurrently skip all subsequent builds.

C. D2: Missed Failure Observation

1) Studied Metrics: Proportion of skipped failing tests.
This metric measures the undesired side effect of cost-saving

techniques skipping some of the failing test cases. It was used

by ST_Herzig15 [21].

Proportion of skipped failing builds. This metric measures

the proportion of failing builds that are skipped among all

failing builds. It was covered in SB_Jin20 [27].

2) Analysis o f Results: Comparing Metrics. All tech-

niques generally skipped a very similar ratio of failing tests

than builds, with small differences.

ST_Mach19_C, ST_Herzig15, ST_Gligoric15, SB_Jin20_S

skipped a slightly higher ratio of failing tests than builds. This

is explained by test-granularity techniques skipping partial

builds in addition to full builds, and thus they also skipped

a higher ratio of failing tests. The case of SB_Jin20_S is

different: it skipped a higher ratio of tests because it skipped

fewer builds with no failing tests — few changed < 4 files.

SB_Abd19, SB_Jin20_C, ST_Mach19_W and SB_Jin20_W

skipped a slightly higher ratio of failing builds than tests.

This means that these techniques skipped failing builds with

lower than average (or no) failing tests, e.g., failing due to

configuration or compilation errors (which amount to 35% of

217

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

T3
0>ro
0E
"5m

T ! P T
90% « 1 ? T

♦ ° J - | r

70% • • P

- T40%
30%

20%

10% r 1 T t “ I 1

> £ a ' # a ' $ a ' $
>5- S ' .'ft <h / J P >

P * ' / ^ / / " * *

Fig. 2: Results for Cost Saving Metrics. Prioritization techniques not included, since they do not skip tests/builds.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

T

i
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Fig. 3: Results for Missed Failure Observation Metrics. Pri-

oritization techniques not included, since they do not skip

tests/builds.

failing builds). Finally, SB_Hassan17_C and SB_Hassan17_W

skipped most failing (and passing) tests and builds.

Comparing Granularities. Build-granularity techniques gen-

erally skipped higher ratios of failing builds and tests than

test-granularity techniques — except for SB_Abd19. They

generally skipped a higher ratio of all tests and builds.

Comparing Techniques. If we rank techniques on these two

metrics of side-effect, we observe that they rank almost exactly

in the opposite order as they would according to build time

saved (for D1). This shows a clear trade-off between cost-

saving and its side effect of skipping failures.

V. Em p i r i c a l St u d y 2. D3: Ti m e -t o -f e e d b a c k

Re d u c t i o n

In D3, we study how much prioritization techniques advance

the observation of failures and how much the side effect in D2

will influence it. So, we study all the time-to-feedback and

computational-cost reduction techniques.

A. Studied Techniques
We only describe here the techniques that we did not

describe in earlier sections: prioritization techniques.

1) Test-prioritization Techniques: For this family of tech-

niques, we replicated all the test-prioritization techniques that

were proposed for improving CI: PT_Elbaum14 [11] and

PT_Marijan13 [37]. To further extend this study, we also

replicated the state-of-the-art test case prioritization (TCP)

technique. We chose the technique that provided the highest

effectiveness in the most recent evaluation of TCP techniques

[35]: PT_Thomas14 [57]. TCP was a rich research area before

CI became a common practice, e.g., [40], [57], [10], [47]. We

apply these techniques to prioritize tests within each build.

PT_Marijan13 [37] prioritizes tests that failed recently or

have a shorter duration. Tests are ordered based on their

historical failure data, test execution time and domain-specific

heuristics.

218

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Results for Time-to-feedback Reduction Metrics.

PT_Elbauml4 [11] favors tests that failed either recently or

a long time ago.

PT_Thomasl4 [57] uses topic modeling to diversity the tests

that get executed earlier. Every prioritized test is selected if

it contains the most different topics from the previous test in

its identifiers and comments. The rationale behind this is that

similar tests often find similar problems.

2) Build-Prioritization Techniques: To the extent of our

knowledge, only one technique has been proposed to prioritize

software builds, PB_Liangl8 [33]. PB_Liangl8 [33] executes

builds containing a recently-failing and recently-non-executed

test in a collision queue. We apply PB_Liangl8 to prioritize

builds within a build waiting queue, as its previous evaluation

did [33]. Queues form when build executions overlap in time.

B. Studied Metrics
1) Positions shifted for observed failing tests within a build:

measures the shifted positions for all observed failing tests

(prioritized or not). A similar metric to this one was used in

the evaluations of PT_Marijanl3 [37], PT_Elbauml4 [11], and

PT_Thomasl4 [57]. For test-selection techniques, we measure

the average number of shifted positions for all remaining tests

— when a test is skipped, the next one can now run one

position earlier.

2) Positions shifted for treated failing builds: measures the

number of builds between every treated (delayed/advanced)

failing build’s original observation position and its new po-

sition. This metric was studied by SB_Jin20 [27]. For test-

granularity techniques, this metric is not impacted, since the

build is still executed in the same position. For build-selection

techniques, we consider that when a build is skipped, it will

run as the next build (its tests will run on it).

3) Positions shifted for all failing builds: measures the

same as the previous one, but now across all failing builds.

PB_Liangl8 used a similar metric in its evaluation [33].

Through this metric, we can understand the impact of the

previous metric over all builds.

4) Build-queue-length saved: This is a metric designed

by us to measure how applying a technique could relieve

the collision problem: when multiple builds are waiting to

be executed within a limited resource. We follow the same

configuration in PB_Liangl8 ’s paper. The build-queue-length

refers to the median number of builds waiting ahead for each

build in each project. With a pre-experiment on all projects,

we find that for only one project - ’’Rails/Rails”, the median

value of every build’s waiting queue is bigger than 0. Thus,

we only report the result for this metric on that project.

C. Analysis o f Results

Comparing Metrics. When comparing positions shifted for

treated failing builds vs. all failing builds, for all techniques,

the advance (PB_Liangl8) or delay (others) that they introduce

in the observation of failing builds is much lower when

measured across the whole population of failing builds. The

upside of this is that the undesired effect of most techniques

(,i.e., delay of failure observation) is very low across all failing

builds (median 0-2 builds). The downside is that the desired

effect of PB_Liangl8 {i.e., advance of failure observation) is

also very low across all failing builds (median 0 builds).

Next, we compare the performance of test selection tech-

niques {i.e., the only overlapping technique family) in the

positions that observed failing tests shifted within a build

vs. the positions that failing builds shifted across all builds.

219

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

We observe that test selection techniques provided some

advancement in the observation of test failures (lower than

most test prioritization techniques), while introducing a very

low delay in observation of build failures (median 0 - 2).

Comparing Granularities. We did not observe a substan-

tial difference when comparing granularities — we observed

stronger differences when comparing techniques.

Comparing Technique Strategies. When comparing tech-

nique strategies (prioritization vs. selection), test-selection

techniques provided some advancement in the observation of

failing tests within a build, but test-prioritization techniques

provided better results overall (except PT_Elbaum14).

Comparing Techniques. PT_Marijan3 and PT_Thomas14

behave very similarly — despite their different approaches

to prioritization — and they are both close to perfect, prior-

itizing most tests correctly. PT_Elbaum14 provides a lower

advancement of test failures (also lower than many test-

selection techniques), since it uses a simpler criterion —

prioritizing tests that were executed very recently or a long

time ago. All test-selection techniques provided a very similar

advancement of test-failure observation, except ST_Herzig15

which was slightly better. Interestingly, ST_Herzig15 was

one of the techniques with the lowest delay in build-failure

observation (median 0 for all failing builds). At the build-

granularity, PB_Liang18 had a very low impact in prioritizing

builds because builds very rarely occurred concurrently in our

dataset — only the Rails project had a meaningful number

of concurrent builds. An important metric in PB_Liang18’s

original evaluation was the savings in the build-queue length.

We plot the results for all techniques for this metric in

Figure 4. Interestingly, we also observed that test-selection

and build-selection techniques also had a strong impact in this

metric — less so for test-selection techniques and SB_Abd19

because they skip fewer full builds (see §IV-B2). Regarding

build-selection techniques, those that saved more builds (see

§IV-B2) also saved more in the build-queue-length metric, but

also introduced higher delays in build-failure observation.

VI. A n s w e r s f o r Re s e a r c h Qu e s t i o n s a n d

Im p l i c a t i o n s

We synthesize our observations and we lay out their impli-

cations to advance this area of research.

A. D1: Computational-cost Reduction
1) RQ1: What design decisions did not help?: First, we

report on missed opportunities for saving more computational

cost. cost-saving techniques focused on skipping passing

builds and tests, but they did not specifically target those that
would provide the highest savings, i.e., slower tests, slower

builds, or all tests in a build (in the case of tests-selection).

This is demonstrated by the fact that build-granularity tech-

niques saved similar ratios of test number, test time, build

number, and build time; and that test-granularity techniques

saved similar ratios of test number and test time, and lower

ratios of build time than test time.

We also learned that training cost-saving techniques
across projects harmed their predictions. In other fields, train-

ing with data from multiple projects is considered to increase

the accuracy of predictors. For cost-saving techniques, though,

this exposed the techniques to more diverse sets of failures,

making more builds/tests “look like a failure”, resulting on the

predictors saving less cost (being less inclined to skip builds

and tests).

Test-selection techniques were also limited in the cost that

they could save when they did not target saving fu ll builds
— ST_Mach19_C and ST_Herzig15 saved very low build time

despite saving a high ratio of tests. An additional aspect that

contributed to ST_Herzig15 saving limited build time (despite

saving high number of tests) is that i t only used features
characterizing the tests, but not the code changes in the build

— e.g., missing the opportunity to skip full builds for no-code

changes.

2) RQ2: What design decisions helped?: Other design

decisions allowed techniques to save high cost. A particularly

useful design decision was trying to predict seemingly-safe
builds and tests — SB_Abd19 saved 21% builds simply

by skipping builds with no-code changes, and ST_Gligoric15

saved 36% builds skipping tests that did not cover the code

changed in the build.

Another decision that provided high cost savings was to

skip fu ll builds instead of individual tests — thus also

saving build-preparation time. Skipping all tests in a build

allows to skip the time to prepare the build (i.e., compilation

and other overhead like virtual machine preparation), and we

observed that build-preparation takes a large portion of
build time. An illustrative example is how ST_Gligoric15

and ST_Herzig15 saved about the same ratio of test time, but

ST_Gligoric15 saved much higher build time because it saved

a much higher ratio of full builds.

Test-selection techniques, however, performed really well

in terms of saving a high ratio of tests (84% by ST_Herzig15

and 80% by ST_Machalica_W). This is because they could

save some cost spread out across many builds — i.e., skipping
partial builds achieved high cost savings. However, the test-

selection techniques that skipped fu ll builds also achieved
high savings. Intentionally or not, ST_Gligoric15 saved many

full builds by simply skipping all tests that did not cover the

changed code. ST_Mach19_W also saved many full builds by

approximating the same idea: one of its predictor’s features is

the distance between the changed code and the test.

3) Implications for Future Techniques: Our results have

multiple implications for the design of future techniques.

First, we encourage future techniques to consider hybrid
approaches to save both full builds and also partial builds,

i.e., to save cost at both build and test granularity. Future

techniques should also leverage the beneficial factors that

we already observed, such as skipping fu ll builds with no
code changes or no tests to cover them . To save more full

builds, novel prediction features could be designed, targeting
slower builds if possible — which no existing technique

attempts. To save more tests, existing techniques already

220

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

provide very useful features (saving a high ratio of tests), but

other new features could be designed to target saving more
and slower tests, and considering the relationships between
the tests and the code changes in the build. Finally, our

observations also show that build time saved is the metric

that most comprehensively shows the cost saved by all existing

techniques — even though cross-referencing multiple metrics

allows for additional observations, as we did in this study.

B. D2: Missed Failure Observation
1) RQ1: What design decisions did not help?: In terms of

the proportion of builds and tests that were skipped by cost-

saving techniques, we generally observe that the decisions
that made techniques save higher cost also made them
make more mistakes, i.e., skip higher ratios of failing builds

and tests. It was also particularly interesting that seemingly-
safe techniques — SB_Abd19 and ST_Gligoric15 — still

showed pretty high ratios of skipped failing builds and
tests. ou r study thus shows that skipping builds with no-code

changes or without tests to execute them is not enough to

guarantee that they will not fail. A quick look discovered that

the builds and tests skipped by these techniques failed for

different reasons, such as configuration or compilation errors

(present in 35% of failing builds).

2) RQ2: What design decisions helped?: one design de-

cision that reduced the skipped failing tests and builds was

training techniques across projects. All the _C variants

skipped lower ratios than their _W counterparts (except

SB_Hassan17_C). Also test-granularity techniques gen
erally skipped lower ratios of failing tests than build-

granularity techniques did of builds.

3) Implications for Future Techniques: These results imply

multiple recommendations for future techniques. First, future

techniques should design novel features to predict failures
that are caused by no-code changes, e.g., configuration

changes, to avoid assuming that seemingly-safe builds will

not fail. Second, future techniques should attempt to break
this trade-off between saving cost and skipping failures.

Existing techniques generally increase cost savings by also in-

creasing missed failure observations. Future techniques should

attempt to improve one of the two dimensions by keeping

the other one fixed (or optimal). Finally, future studies should

propose new metrics to better assess the trade-off between
cost-saving and skipped-failures of various techniques —

since most techniques succeed in one at the expense of the

other. SB_Jin20 [27] proposed the harmonic mean of the

two as a balanced metric, but further study is granted to

understand whether both should be valued equally or in a

weighted manner — particularly considering the much higher

ratio of passes to failures in CI datasets.

C. D3: Time-to-feedback Reduction

1) RQ1: What design decisions did not help?: Unsurpris-

ingly, build-selection techniques did not advance the obser
vation of build failures at all, but at least they introduced very

low delays in the observation of failing builds (and also saved

some computational cost). Similarly, test-selection techniques
also introduced a small delay in the observation of test
failures. Build-prioritization also showed very limited ad
vancement in observing failing builds, but that was mainly

because only one of our studied projects (open-source) had

some contention in the build queue. We expect that industrial

software project would obtain a much higher benefit from this

approach. Finally, we also observed that the build-selection

techniques that produced higher cost savings also introduced
higher delays in build-failure observation, showing again

the tension between both goals.

2) RQ2: What design decisions helped?: The best tech
niques to provide early feedback were test-prioritization
techniques. In fact, PT_Thomas14 provided near perfect re-

sults. We also found that test-selection techniques provided
lower, but competitive advancement of test failure obser
vation, while also providing some cost savings. For exam-

ple, ST_Herzig15 provided high advancement of test-failure

observation within a build, with very low delay of build-

failure observation, while also saving some computational

cost. Similarly, we observed that build-selection techniques
could also provide reductions in build-queue-length that
were competitive with build prioritization .

3) Implications for Future Techniques: For future tech-

niques, we recommend to combine test prioritization with
test selection techniques — since prioritization techniques

could stop after the first failure is identified, and save the cost

of running the remaining tests. We found that test-prioritization

techniques already reached very high results (PT_Thomas14 is

near perfect), so the features that they use could be also very

useful for test selection to save cost. Conversely, existing test-

selection techniques that already perform very well for cost-

savings (e.g., ST_Herzig15) could be improved in their ability

to advance failure observation. Similarly, we recommend to

further study the application of build-selection techniques to
provide early observation of build failures by reducing the

build queue via skipping builds in industrial projects in which

parallel build requests are a larger issue. Finally, there is also

space to develop new metrics that could capture the balance

that techniques provide across all dimensions D1-D3.

D. Standing on the Shoulders o f Giants
our findings confirm and extend previous work:

1) D1: Beller et al. [4] observed that test time is a low

proportion of build time. We extend this observation by finding

that our studied test-selection techniques infrequently skipped

full (all tests within) builds, which strongly limited their cost-

saving ability. We thus recommend test-selection to incentivize

skipping full builds to save higher cost in CI.

2) D2: Jin and Servant [27] observed a trade-off of higher

cost savings incurring more missed build failures in their

technique. We extend this observation by finding that all our

studied techniques were affected by that trade-off (techniques

ranked equally by cost savings as by missed failures). We

additionally identified clear strategies that made techniques

miss fewer failures: training across projects, and operating

221

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

at test granularity. We also observed that a seemingly-safe

technique [2] still missed a high ratio of failures. Finally, we

elicited the need for better prediction of safe builds, and new

metrics to compare trade-offs.

3) D3: Herzig et al. [21] found that their test-granularity

technique incurs low delay in build-failure observations. We

extend this observation by finding that all our other stud-

ied test-granularity techniques also incur low build-failure-

observation delay, measured across all failing builds.

VII. Th r e a t s t o Va l i d i t y

A. Internal Validity
To guard internal validity, we carefully tested our evaluation

tools on subsets of our dataset while developing them.

Our analysis could also be influenced by incorrect in-

formation in our analyzed dataset. For this, we studied a

popular dataset that is prevalent among continuous integration

studies: TravisTorrent [6]. Furthermore, many of our studied

techniques [2], [20], [27], [33] were originally evaluated on

TravisTorrent projects. Additionally, we extensively curated

TravisTorrent, removing: toy projects following standard prac-

tice [25], [42], unusable projects for test-granularity tech-

niques, and cancelled builds as in past work [14], [26], [44].

Finally, we also followed the advice in Gallaba et al. ’s study

[14] to consider the nuance in the TravisTorrent dataset. We

did so in the following ways: (1) We considered passing builds

with ignored failures as passing. Developers manually flag

such failures to be ignored when they cannot officially support

them [14], and thus should not represent the status of the

build. (2) We considered builds that fail after another failure

as correctly labeled, because they flag an unsolved problem,

being informative for developers. (3) We considered failing

builds with passing jobs as failing builds. If at least one job

fails, it signals a problem, informing developers.

our results may also be affected by flaky tests causing

spurious failing builds. However, CI systems are expected to

function even in the presence of flaky tests, since most com-

panies do not consider it economically viable to remove them,

e.g., [36], [39]. Besides, cross validation may make unrealistic

use of chronological events To address this problem, we used

time-based cross validation [7].

our observed build and test runtimes may have been influ-

enced by the load experienced in the build server at the time.

However, we consider this potential impact to be very low,

since we observed that the standard variance in test duration

across builds was 0.5 seconds.

B. External Validity
To increase external validity, we selected the popular dataset

TravisTorrent, which has been analyzed by many other re-

search works. The projects we chose were all Java or Ruby

projects, because there are no projects with other programming

languages in the data set. Although these two programming

languages are popular, different CI habits in other languages

may provide slightly different results to the ones in this

study. ou r observations may slightly vary for separate software

projects, but our goal was to derive general observations for a

real-world population of software projects.

C. Construct Validity
A threat to construct validity is whether we studied software

projects that are similar to those that suffer most accutely

from high CI cost and delays in failure observation, e.g., the

projects at Google [24] and Microsoft [21]. We studied the

TravisTorrent dataset, which is the standard dataset used in the

literature to evaluate techniques to save cost in CI [2], [27],

[33], [9]. one of our studied projects (Rails) is particularly

similar to industrial software projects. Rails was used along-

side two other Google datasets to evaluate PB_Liang18 et al.
[33], and it had similar magnitudes of test suites (thousands),

test executions (millions) and test execution time (millions of

seconds).

Nevertheless, early observation (or prediction) of build

failures is beneficial, regardless of how much load a project's

CI system experiences. It allows developers to not have to

wait for builds to finish, which is the motivation of multiple

previous works, e.g., [20], [2]. In particular, Abdalkareem et
al. [2] found that developers from small projects — as small

as 168 commits — also chose to manually skip commits in CI

to save time. These savings can be substantial for the projects

in our studied dataset: test-suite runtime varies from project

to project (median 2.3 mins, 75th percentile 26 mins) but,

more importantly, saving full builds could save much higher

cost (median 14 mins, 75th percentile 52 mins). Also, many

builds (20%) take longer than 30 minutes [4]. Test-selection

could save higher cost if it leaned harder towards skipping full

builds, but we found in this study that this incentive is not yet

strongly leveraged by our studied test selection techniques.

VIII. Re l a t e d Wo r k

A. Empirical Studies o f CI and its Cost and Benefit
Multiple researchers focused on understanding the practice

of CI, studying both practitioners e.g., [24] and software

repositories [60]. Vasilescu et al. studied CI as a tool in social

coding [59], and later studied its impact on software quality

and productivity [60]. Zhao et al. studied the impact of CI

in other development practices, like bug-fixing and testing

[65]. Stahl et al. [56] and Hilton et al. [24] studied the

benefits and costs of using CI, and the trade-offs between

them [23]. Lepannen et al. similarly studied the costs and

benefits of continuous delivery [31]. Felidre et al. [12] studied

the adherence of projects to the original CI rules [13]. other

recent studies analyzed testing practices [16], difficulties [43]

and pain points [61] in CI.

The high cost of running builds is highlighted by many

empirical studies as an important problem in CI [24], [23],

[43], [61], [21] — which reaches millions of dollars in large

companies, e.g., at Google [24] and Microsoft [21]. People

[23], [60] believe that the benefit of CI is mainly lying in

the early fault detection. Others [24], [31] find that projects

adopting CI are able to adopt pull requests and release in a

shorter time. Some also find that CI can help developer team

222

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

in other areas such as providing a common build environment

[23] and increasing team communication [56].

B. Approaches to Reduce Time-to-feedback in CI
A related effort for improving CI aims at speeding up its

feedback by prioritizing its tasks. The most common approach

in this direction is to apply test case prioritization (TCP)

techniques e.g., [35], [40], [11], [37], [10], [47], [67] so that

builds fail faster. These techniques, even though not designed

to work in CI environment, have been claimed to have a

potential to provide CI users earlier fault observation. An-

other similar approach achieves faster feedback by prioritizing

builds instead of tests [33]. Their paper grants higher priority

to those builds that are more likely to fail according to the

historical failing information and works well for those projects

that have a ton of collision issues. Naturally, these kinds of

techniques don’t provide benefit in saving the cost. In this

paper, we study both test-prioritization techniques as well as

build-prioritization techniques in terms of advancement of fail-

ure observation and compare them with selection techniques.

C. Approaches to Reduce Cost o f CI
A popular effort to reduce the cost of CI focuses on

understanding what causes long build durations e.g., [17], [58].

Thus, most of the approaches that reduce the cost of CI aim

at making builds faster by running fewer test cases on each

build. It is found that a ton of passing tests could be saved in

this way [29]. Some approaches use historical test failures to

select tests [21], [11]. Others run tests with a small distance

to code changes [38] or skip testing unchanged modules [55].

Recently, Machalica et al. predicted test case failures using

a machine learning classifier [36]. These techniques are based

on the broader field of regression test-selection (RTS) e.g.,
[6 6], [64], [18], [63], [62], [46], [45]. While these techniques

focus on making every build cheaper, other work addresses the

cost of CI differently: by reducing the total number of builds

that get executed. A related recent technique saves cost in CI

by not building when builds only include non-code changes

[2], [1]. They firstly create a rule-based selection technique

and then take advantage of machine learning algorithm to

improve the accuracy. Then Jin and Servant propose a build

strategy that developing team should skip those less informa-

tive passing builds through build outcome prediction. Finally,

other complementary efforts to reduce build duration have

targeted speeding up the compilation process e.g., [8] or the

initiation of testing machines e.g., [15]. In this paper, we refer

cost-reduction techniques as selection techniques. We pick

techniques in both build-selection techniques and test-selection

techniques and examines their performance in different cost-

saving and fault-observation metrics.

D. Evaluation frameworks for similar techniques
Multiple research works focus on comparing cross-tool

performance with an evaluation framework. Zhu et al. [6 6]

propose a regression test selection framework to check the

output against rules inspired by existing test suites for three

techniques. Leong et al. [30] propose a test selection algorithm

evaluation method and evaluate five potential regression test

selection algorithms, finding that the test selection problem

remains largely open. Najafi et al. [41] studied the impact

of test execution history on test selection and prioritization

techniques. Luo et al. [35] conduct the first empirical study

comparing the performance of eight test prioritization tech-

niques applied to both real-world and mutation faults and find

that the relative performance of the studied test prioritization

techniques on mutants may not strongly correlate with perfor-

mance on real faults. Lou et al. [34] systematically created a

taxonomy of existing works in test-case prioritization, classi-

fying them in: algorithms, criteria, measurements, constraints,

scenarios, and empirical studies.

Differently to these works, our study in this paper specifi-

cally targets the context of CI, and it has a broader focus than

test prioritization or selection. Our study is the first to compare

all the techniques proposed to reduce time-to-feedback or cost

in CI, including prioritization and selection techniques, at test

and build granularities. We performed observations comparing

across 2 goals, 3 dimensions, 10 metrics, 2 granularities, and

10 techniques. Most of our observations required comparisons

at broad scope. For example: we revealed the need for a new

incentive in test selection to skip full test suites (to also save

build-preparation time), which would not be relevant in studies

outside the scope of CI.

IX. Co n c l u s i o n s a n d Fu t u r e w o r k

In this article, we performed the most exhaustive evaluation

of CI-improving techniques to date. We evaluated 14 variants

of 10 CI-improving approaches from 4 families on 100 real-

world projects. We compared their results across 10 metrics

in 3 dimensions. We derived many observations from this

evaluation, which we then synthesized to understand the

design decisions that helped each dimension of metrics, as well

as those that had a negative impact on it. Finally, we provide a

set of recommendations for future techniques in this research

area to take advantage of the factors that we observe were

beneficial, and we lay out also future directions to improve

on those factors that were not. We lay out plans to combine

approaches at test and build granularities to save further costs,

and to combine selection and prioritization approaches to

improve on the early observation of failures while also saving

some cost. Such techniques could consider additional history-

based prediction features, such as the project’s code-change

history, e.g., [50], [51], [49], [53], [54], since test-execution

history was beneficial for some techniques, e.g., [21]. We

also discuss the need of future metrics to capture the various

characteristics of these techniques in a more holistic way.

In the future, we will work on designing a comprehensive

technique that combines selection and prioritization as well

as build and test granularities to maximize the benefit of CI

while reducing its cost as much as possible.

X. Re p l i c a t i o n

We include a replication package for our paper [28].

223

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

Re f e r e n c e s

[1] R. Abdalkareem, S. Mujahid, and E. Shihab. A machine learning ap-
proach to improve the detection of ci skip commits. IEEE Transactions
on Software Engineering (TSE), 2020.

[2] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling. Which commits
can be ci skipped? IEEE Transactions on Software Engineering, 2019.

[3] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov.
Deflaker: Automatically detecting flaky tests. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 433-
444. IEEE, 2018.

[4] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke the build:
An explorative analysis of travis ci with github. In Mining Software
Repositories (MSR), 2017 IEEE/ACM 14th International Conference on,
pages 356-367. IEEE, 2017.

[5] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration.
In Proceedings of the 14th working conference on mining software
repositories, 2017.

[6] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration.
In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th Interna-
tional Conference on, pages 447-450. IEEE, 2017.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmful... really? In 2008 IEEE International
Conference on Software Maintenance, pages 337-345. IEEE, 2008.

[8] A. Celik, A. Knaust, A. Milicevic, and M. Gligoric. Build system
with lazy retrieval for java projects. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 643-654. ACM, 2016.

[9] B. Chen, L. Chen, C. Zhang, and X. Peng. Buildfast: History-aware build
outcome prediction for fast feedback and reduced cost in continuous
integration. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 42-53. IEEE, 2020.

[10] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioriti-
zation: A family of empirical studies. IEEE transactions on software
engineering, 28(2):159-182, 2002.

[11] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 235-245, 2014.

[12] W. Felidre, L. Furtado, D. A. Da Costa, B. Cartaxo, and G. Pinto.
Continuous integration theater. In Proceedings of the 13th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, page 10, 2019.

[13] M. Fowler and M. Foemmel. Continuous integration. Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, 122:14,
2006.

[14] K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh. Noise and
heterogeneity in historical build data: an empirical study of travis ci.
In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pages 87-97. ACM, 2018.

[15] A. Gambi, Z. Rostyslav, and S. Dustdar. Improving cloud-based contin-
uous integration environments. In Proceedings of the 37th International
Conference on Software Engineering-Volume 2, pages 797-798. IEEE
Press, 2015.

[16] A. Gautam, S. Vishwasrao, and F. Servant. An empirical study of
activity, popularity, size, testing, and stability in continuous integration.
In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 495-498. IEEE, 2017.

[17] T. A. Ghaleb, D. A. da Costa, and Y. Zou. An empirical study of
the long duration of continuous integration builds. Empirical Software
Engineering, pages 1-38, 2019.

[18] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, pages 211-
222, 2015.

[19] F. Hassan, S. Mostafa, E. S. Lam, and X. Wang. Automatic building
of java projects in software repositories: A study on feasibility and
challenges. In 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 38-47. IEEE,
2017.

[20] F. Hassan and X. Wang. Change-aware build prediction model for
stall avoidance in continuous integration. In 2017 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 157-162. IEEE, 2017.

[21] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of
testing less without sacrificing quality. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages
483-493. IEEE, 2015.

[22] K. Herzig and N. Nagappan. Empirically detecting false test alarms
using association rules. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pages 39-48. IEEE,
2015.

[23] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: assurance, security, and flexibility. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 197-207. ACM, 2017.

[24] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage,
costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 426-437. ACM, 2016.

[25] M. R. Islam and M. F. Zibran. Insights into continuous integration build
failures. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th
International Conference on, pages 467-470. IEEE, 2017.

[26] R. Jain, S. K. Singh, and B. Mishra. A brief study on build failures in
continuous integration: Causation and effect. In Progress in Advanced
Computing and Intelligent Engineering, pages 17-27. Springer, 2019.

[27] X. Jin and F. Servant. A cost-efficient approach to building in continuous
integration. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), pages 13-25. IEEE, 2020.

[28] X. Jin and F. Servant. What helped, and what did not? An Evaluation of
the Strategies to Improve Continuous Integration, Mar. 2020. Available
at https://doi.org/10.5281/zenodo.4372963.

[29] A. Labuschagne, L. Inozemtseva, and R. Holmes. Measuring the
cost of regression testing in practice: a study of java projects using
continuous integration. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 821-830, 2017.

[30] C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco. Assessing
transition-based test selection algorithms at google. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP), pages 101-110. IEEE, 2019.

[31] M. Leppanen, S. Makinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mäntyla, and T. Mannisto. The highways and country roads to contin-
uous deployment. Ieee software, 32(2):64-72, 2015.

[32] J. Liang. Cost-effective techniques for continuous integration testing.
2018.

[33] J. Liang, S. Elbaum, and G. Rothermel. Redefining prioritization:
continuous prioritization for continuous integration. In Proceedings of
the 40th International Conference on Software Engineering, pages 688-
698, 2018.

[34] Y. Lou, J. Chen, L. Zhang, and D. Hao. A survey on regression test-
case prioritization. In Advances in Computers, volume 113, pages 1-46.
Elsevier, 2019.

[35] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta. Assessing test case
prioritization on real faults and mutants. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
240-251. IEEE, 2018.

[36] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. Predictive test
selection. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pages 91-
100. IEEE, 2019.

[37] D. Marijan, A. Gotlieb, and S. Sen. Test case prioritization for
continuous regression testing: An industrial case study. In 2013 IEEE
International Conference on Software Maintenance, pages 540-543.
IEEE, 2013.

[38] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco. Taming google-scale continuous testing. In 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 233-242.
IEEE, 2017.

[39] J. Micco. The state of continuous integration testing@ google. 2017.
[40] S. Mostafa, X. Wang, and T. Xie. Perfranker: prioritization of perfor-

mance regression tests for collection-intensive software. In Proceedings
ofthe 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 23-34, 2017.

224

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

[41] A. Najafi, W. Shang, and P. C. Rigby. Improving test effectiveness
using test executions history: An industrial experience report. In 2019
IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 213-222. IEEE,
2019.

[42] A. Ni and M. Li. Cost-effective build outcome prediction using cascaded
classifiers. In 2017IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 455-458. IEEE, 2017.

[43] G. Pinto, M. Reboucas, and F. Castor. Inadequate testing, time pressure,
and (over) confidence: a tale of continuous integration users. In
Proceedings of the 10th International Workshop on Cooperative and
Human Aspects of Software Engineering, pages 74-77. IEEE Press,
2017.

[44] M. Reboucas, R. O. Santos, G. Pinto, and F. Castor. How does
contributors’ involvement influence the build status of an open-source
software project? In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 475-478. IEEE Press, 2017.

[45] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on software engineering, 22(8):529-551,
1996.

[46] G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(2):173-210, 1997.

[47] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Transactions on software engineering,
27(10):929-948, 2001.

[48] SciTools Understand. Understand static code analysis tool. https:
//scitools.com/, 2020. [Online; accessed 02-March-2020].

[49] F. Servant. Supporting bug investigation using history analysis. In
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 754-757. IEEE, 2013.

[50] F. Servant and J. A. Jones. History slicing. In 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2011), pages 452-455. IEEE, 2011.

[51] F. Servant and J. A. Jones. History slicing: assisting code-evolution
tasks. In Proceedings of the ACM SIGSOFT 20th International Sympo-
sium on the Foundations of Software Engineering, pages 1-11, 2012.

[52] F. Servant and J. A. Jones. WhoseFault: Automatic Developer-to-Fault
Assignment through Fault Localization. In International Conference on
Software Engineering, pages 36-46, 2012.

[53] F. Servant and J. A. Jones. Chronos: Visualizing slices of source-
code history. In 2013 First IEEE Working Conference on Software
Visualization (VISSOFT), pages 1-4. IEEE, 2013.

[54] F. Servant and J. A. Jones. Fuzzy fine-grained code-history analysis. In
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), pages 746-757. IEEE, 2017.

[55] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka.
Optimizing test placement for module-level regression testing. In 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pages 689-699. IEEE, 2017.

[56] D. Stahl and J. Bosch. Experienced benefits of continuous integration in
industry software product development: A case study. In The 12th iasted
international conference on software engineering,(innsbruck, austria,
2013), pages 736-743, 2013.

[57] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein. Static test
case prioritization using topic models. Empirical Software Engineering,
19(1):182-212, 2014.

[58] M. Tufano, H. Sajnani, and K. Herzig. Towards predicting the impact
of software changes on building activities. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), ICSE ’19, 2019.

[59] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik, and
M. G. van den Brand. Continuous integration in a social-coding world:
Empirical evidence from github. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 401-405. IEEE, 2014.

[60] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality and
productivity outcomes relating to continuous integration in github. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 805-816. ACM, 2015.

[61] D. G. Widder, M. Hilton, C. Kastner, and B. Vasilescu. A conceptual
replication of continuous integration pain points in the context of travis
ci. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 647-658. ACM, 2019.

[62] S. Yoo and M. Harman. Pareto efficient multi-objective test case
selection. In Proceedings of the 2007 international symposium on
Software testing and analysis, pages 140-150. ACM, 2007.

[63] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67-120, 2012.

[64] L. Zhang. Hybrid regression test selection. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pages 199—
209. IEEE, 2018.

[65] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact
of continuous integration on other software development practices: a
large-scale empirical study. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, pages
60—71. IEEE Press, 2017.

[66] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric. A framework for
checking regression test selection tools. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 430—
441. IEEE, 2019.

[67] Y. Zhu, E. Shihab, and P. C. Rigby. Test re-prioritization in continuous
testing environments. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 69—79. IEEE,
2018.

225

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore. Restrictions apply.

