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Abstract—Continuous integration (CI) is a widely used practice 
in modern software engineering. Unfortunately, it is also an 
expensive practice — Google and Mozilla estimate their CI 
systems in millions of dollars. There are a number of techniques 
and tools designed to or having the potential to save the cost of 
CI or expand its benefit - reducing time to feedback. However, 
their benefits in some dimensions may also result in drawbacks 
in others. They may also be beneficial in other scenarios where 
they are not designed to help. In this paper, we perform the first 
exhaustive comparison of techniques to improve CI, evaluating 
14 variants of 10 techniques using selection and prioritization 
strategies on build and test granularity. We evaluate their 
strengths and weaknesses with 10 different cost and time-to- 
feedback saving metrics on 100 real-world projects. We analyze 
the results of all techniques to understand the design decisions 
that helped different dimensions of benefit. We also synthesized 
those results to lay out a series of recommendations for the 
development of future research techniques to advance this area.

Index Terms—continuous integration, software maintenance, 
empirical software engineering

I. In t r o d u c t i o n

Continuous Integration (CI) is a software development prac-

tice by which developers integrate code into a shared repos-

itory several times a day [13]. However, CI gains adoption 

in practice, difficulties e.g., [43] and pain points e.g., [61] 

have been discovered about it. As software companies adopt 

CI, they execute builds for many of projects, and they do so 

very frequently. As workload increases, two main problems 

appear: (1 ) the time to receive feedback from the build process 

increases, as software builds often outnumber the available 

computational resources — having to wait in build queues, 

and (2 ) the computational cost of running builds also becomes 

very high. Previous studies e.g., [38] have highlighted the long 

time that developers have to wait to receive feedback about 

their builds. For example, at Google, developers must wait 45 

minutes to 9 hours to receive testing results [33]. Even just 

the dependency-retrieval step of CI can take up to an hour per 

build [8 ]. Regarding the high cost of running builds, that is 

also highlighted in other studies [21], [23], [24], [43], [61]. 

The cost of CI reaches millions of dollars, e.g., at Google 

[24] and Microsoft [2 1 ]. While other problems exist for CI, 

we focus on these two because they are the ones that most 

existing techniques have focused on addressing. They are also 

interrelated, since cost-reduction techniques may also reduce

time-to-feedback — e.g., skipping some tests may cause other 

tests to fail earlier.

Multiple techniques have been proposed to improve CI. 

Most of them have the goal of reducing either its time-to- 
feedback or its computational cost. All such techniques con-

sider the observation of build failures to be more valuable than 

build passes, because failures provide actionable feedback, i.e., 
they point to a problem that needs to be addressed. Time- 
to-feedback-reduction techniques aim to observe failures 
earlier — by prioritizing failing executions over passing 

ones. These techniques may operate in two different levels 

of granularity, by prioritizing: test executions e.g., [1 1 ], or 

build executions e.g., [33]. Computational-cost-reduction 
techniques aim to observe failures only — by selectively 
executing failing builds only, saving the cost of executing 

passing ones. They also may operate at two different levels 

of granularity, selecting: test executions e.g., [36], or build 

executions e.g., [2 ].

To the extent of our knowledge, the existing techniques 

to improve CI have been evaluated under different settings, 

making it hard to compare them. Previous studies used differ-

ent software projects, different metrics, and rarely compared 

one technique to another. However, we expect that different 

choices of goal, granularity, and technique design will bring 

different trade-offs. For example, cost-reduction techniques at 

build-granularity may be more risky than a test-granularity 

one, i.e., it may save more cost when it skips all the tests in 

a build, but it may also make more mistakes if it skips many 

failing tests in a build. However, the opposite may be true, 

if test-granularity cost-reduction techniques also skip a large 

ratio of full builds (i.e., all the tests in the build). On another 

example, test-selection techniques may be a good alternative to 

test-prioritization techniques that also saves cost as an added 

benefit, or they may instead delay the observation of test 

failures if they mispredict too many of them. To the best of 

our knowledge, how these trade-offs manifest in practice is 

still mostly unknown. Empirically understanding these trade-

offs will have valuable practical implications for the design of 

future techniques and for practitioners adopting them.

In this paper, we perform the first evaluation of the existing 

strategies to improve CI. We aim to understand the trade-

offs between these techniques for three dimensions: (D1 ) 

computational-cost reduction, (D2 ) missed failure observation,

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
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and (D3) early feedback.

For this goal, we performed a large-scale evaluation. We 

replicated and evaluated all the existing 10 Cl-improving 

techniques from the research literature, representing the two 

goals (time-to-feedback and computational-cost reduction) and 

the two levels of granularity (build-level and test-level) for 

which such techniques have been proposed. We evaluated these 

techniques under the same settings, using the state-of-the-art 

dataset of continuous-integration data: TravisTorrent [5]. To 

be able to study all techniques, we extended TravisTorrent in 

multiple ways, mining additional Travis logs, Github commits, 

and building dependency graphs for all our studied projects. 

Finally, we measured the effectiveness of all techniques with 

1 0  metrics in 3 dimensions. We included every metric that any 

previous evaluation of our studied techniques used (7), refitted 

2  others and designed an additional one.

We analyzed the results obtained by all techniques on 

all metrics across all 3 dimensions, and we synthesized our 

observations, to understand which design decisions helped and 

which ones did not for each dimension. Finally, we further 

reflect on our results to provide a wide set of recommendations 

for the design of future techniques in this research area.

The main contributions of this paper are: (1) the first com-

prehensive evaluation of CI-improving techniques; (2) a col-

lection of metrics to measure the performance of CI-improving 

techniques over various dimensions; (3) an extended Travis 

Torrent dataset with: detailed test and commit, and dependen-

cies information; (4) the replication of 14 variants of 10 CI- 

improving techniques; (5) evidence for researchers to design 

future CI-improving techniques.

II. Ap p r o a c h e s  t o  Im p r o v e  Co n t i n u o u s  I n t e g r a t i o n

We summarize technique families in Table I and discuss 

each technique in detail in §III-C. Figure 1 depicts a non-

interventional example timeline of builds, a timeline in which 

a build-selection technique is applied, a timeline produced 

by build-prioritization technique, a timeline where a test- 

selection technique is applied, and a timeline with applying 

a test-prioritization approach. The example timeline shows a 

chronological numbered sequence of builds in CI. Each build 

is made up of at least one test. We depict each test suite as a 

rectangle with a test number (e.g., t1). Failing tests are then 

highlighted in gray. The length of the rectangle refers to the 

time duration for the test to be executed. We depict skipped 

tests with a dashed rectangle. In the most ideal cost-saving 

scenario, all of the passing tests would be skipped and all of 

the failing tests would be observed as soon as possible.

A. Computational-cost Reduction
1) Test-level granularity: Test-selection techniques [18], 

[21], [36], [38], [55], [64], [6 6 ] aim at automatically detect 

and label tests that are not going to fail. These test-level 

approaches collect information from test history and project 

dependency along with the current commit and use some 

heuristic models to detect failing tests and skip the others. 

Figure 1 also illustrates how this type of techniques works

in the simulation timeline. After a test-selection approach is 

activated, it selects a subset of tests (e.g., t2 in build #2, t4 

in build #4) that it predicts to have a possibility to fail and 

decides to skip the others (e.g., t3 in build #1, t1 in build #5). 

For those tests that are not selected in the timeline and get 

skipped, we depict them as dashed rectangles. In this paper, 

we consider it can skip some builds when it selects no test in 

those builds.

2) Build-level granularity: Build-selection techniques [1],

[2], [20], [27], [42] aim at automatically detect and label 

commits and builds that can be CI skipped. Some approaches 

[20], [27], [42] try to detect failing builds and skip those 

passing builds to achieve cost-saving. Others [1], [2] aim at 

identifying commits that can be CI skipped. Figure 1 illustrates 

how they work in the simulation timeline. As a build-level 

technique, when build-selection approach decides to skip a 

build (e.g., build #2, #4, #6 ), normally it skips all of the tests 

in that build. The inner test sequence is not changed and all 

of tests are run in an executed build.

B. Time-to-feedback Reduction
1) Test-level granularity: Test-prioritization techniques

[11], [35], [37], [40], [57] try to give high priority to tests that 

are predicted to be failed so that developers could be informed 

in a shorter time. This family of approaches normally rearrange 

the execution order of tests within a build to make predicted- 

to-fail tests run earlier by analyzing information such as test 

failing history and test context. Figure 1 depicts an example of 

how this type of techniques works in the simulation timeline. 

With a test-level approach being activated, the CI system gives 

different tests different priorities and firstly executes those tests 

with a higher priority (e.g., t4 in build #2, t2 in build #3) as 

well as delays low-priority tests (e.g., t1 in build #3, t2 in 

build #6 ). The sequence of test executions in this timeline gets 

rearranged and the start-time for tests that are more likely to 

fail move ahead in time. Also, all tests are executed at last.

2) Build-level granularity: Build-prioritization techniques 

[33] aim at automatically prioritizes commits that are waiting 

for being executed. They favor builds with a larger percentage 

of test suites that have been found to fail recently and builds 

including test suites that have not been executed recently as an 

alternative path. Figure 1 also shows how this family of tech-

niques works in the simulation timeline. Build-prioritization 

techniques will only be activated when there is a collision 

of builds (i.e., there are multiple builds waiting to occupy 

the limited resource). The technique is build-level so it will 

not change the inner order of the test executions and it will 

normally change the sequence of tests across builds when the 

approach is activated (e.g., build #4, #5). None of tests become 

dashed in this timeline because they all eventually execute.

III. Re s e a r c h  Me t h o d

In this paper, we replicated and evaluated 14 variants of 

10 CI-improving techniques, covering their two goals (time- 

to-feedback and computational-cost reduction) and their two 

levels of granularity (build-level and test-level) with 1 perfect
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Build 1 Build 2 Build 3 Build 4 Build 6
No-Intervention

Timeline

Test-prioritization 
Timeline “

Mr a 
o -a

Build-prioritization_
Timeline

t1 t2 t3 | t 2 t4 t1 | t 2 t3 t4 t1 t2 t4

Build 1 Build 2 Build 3 Build 4
t1 t2 t3 t2 | t 2 t3 t4 t1 t1 t2

Build 5

Build 5 
t1

Build 1 Build 2
t1 t2 t3

Build 3
t2 t4 t1 | t 2 t3 t4

Build 5 
t1

Build 4
t1 t2 t4

t1 t2 t3 t4

Build 6
t3 t4 t1 t2

Build 6
t1 t2 t3 t4

Test-selection
Timeline

Build 1 Build 2 Build 3 Build 4 Build 5 Build 6
t1 t2 t 3 r t2 t4 t1 t2 t3 t4 t1 t2 t 4 — !t1:--- [t1 t2 t3 t4

Build-selection
Timeline

Build 1
t1 t2 t3

Build 2
t2 t4 -

Build 3
t1 | t 2 t3 t4

...Bu.ii.d .4 .., 
t1 t2 t4

Build 5 ........Bu ild_ 6 ... . ,
t1 t2 t3 1 4 -

Fig. 1: Example timeline. Failing tests in gray. Build-selection runs builds fully when it predicts a failing build. Test-selection 

runs builds partially (for tests that would fail). Build-prioritization changes the build sequence. Test-prioritization changes the 

test sequence within a build.

technique for the ideal timeline. We evaluate them over 1 0 0  

software projects in TravisTorrent, which we extended to be 

able to run all such kinds of techniques.

ou r goal is to understand the trade-offs between existing 

CI-improving techniques, and between the metrics that have 

been used to evaluate them. We perform 2  empirical studies 

to analyze these trade-offs for the following 3 dimensions of 

CI-improving techniques, using 1 0  metrics. We only include 

selection techniques in Empirical Study 1 since prioritization 

techniques have no power in cost saving by nature. We involve 

selection and prioritization techniques in Empirical Study 2 

because both of them can have an impact on fault detection, 

e.g., wrongly-skipped failing builds by selection approaches 

can cause delay in fault detection.

Empirical Study 1: Cost Saving 
D1: Computational-cost Reduction 
D2: Missed Failure Observation 

Empirical Study 2: Time-to-feedback Reduction 
D3: Early Feedback 
For each dimension, we study:

RQ1: What design decisions helped this dimension?
RQ2: What design decisions did not help this dimension?

A. Data Set
We perform our study over the Travis Torrent dataset [4], 

which includes 1,359 projects (402 Java projects and 898 Ruby 

projects) with data for 2,640,825 build instances. We remove 

“toy projects” from the data set by studying those that are 

more than one year old, and that have at least 2 0 0  builds and 

at least 1 0 0 0  lines of source code, which is a criteria applied 

in multiple other works [42], [25]. To be able to evaluate test- 

granularity techniques, we also filter out those projects whose 

build logs do not contain any test information. We focused our 

study on builds with passing or failing result, rather than error 

or canceled — since they can be exceptions or may happen 

during the initialization and get aborted immediately before 

the real build starts. Besides, in Travis a single push or pull- 

request can trigger a build with multiple jobs, and each job

corresponds to a configuration of the building step. We did a 

preliminary investigation of these builds and found that these 

jobs with the same build identifier normally share the same 

build result and build duration. Thus, as many existing papers 

have done [14], [44], [26], we considered these jobs as a single 

build. After this filtering process, we obtained 82,427 builds 

from 100 projects (13,464 failing builds).

To be able to execute all our studied techniques, we ex-

tended the information in TravisTorrent of these 100 projects 

in multiple ways. First of all, we needed to know the duration 

of each individual test for the comparison and replication. 

Also, to replicate some techniques, e.g., [21], [11], we needed 

to capture the historical failure ratio for each individual test. 

To obtain these information, we built scripts to download 

the raw build logs from Travis and parse them to extract all 

of the information about test executions, such as test name, 

duration and outcome. Some techniques, e.g., [36], [2], require 

additional information that TravisTorrent does not provide for 

builds, such as the content of commit messages, changed 

source lines and changed file names. For that, we also mined 

additional information about commits in the projects’ code 

repositories through Github. Then, we matched each test with 

its corresponding test file in the project. Finally, to be able to 

run other techniques, e.g., [18], [36], we built a dependency 

graph for the source code of each project using a static code 

analysis tool (Scitool understand [48]) to determine the paths 

between the source files and test files.

B. Evaluation Process
We evaluate the techniques in a real-world scenario, to 

understand as best as possible the behavior that the techniques 

would show in practice. We take two measures for that.

First, we respect the original chronological order of build 

and test operations when training techniques. We achieve that 

by using an 1 1 -fold, chronological variant of cross-validation. 

For each project, we split its chronological timeline into 11 

folds. We use the first chronological fold only for testing, and 

we iteratively test the other 10 folds. For each testing fold,
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TABLE I: Studied Techniques. IV. Em p i r i c a l  St u d y  1: Co s t  Sa v i n g

Goal Approach Granularity Studied Technique
Time to 

Feed-

back

Prioritization
Test

PT Marijan13 [37]

PT Elbaum14 [11]

PT_Thomas14 [57]

Build PB_Liang18 [32]

Comput-

ational

Cost

Selection

Test

ST Gligoric15 [18]

ST Herzig15 [21]

ST Mach19 [36]

Build

SB Hassan17 [20]

SB Abd19 [2]

SB Jin20 [27]

we train on all the folds that precede it chronologically. This 

approach has been used in previous works e.g., [7], [52] to 

avoid training with information that would not be available in 

practice, i.e., it happens in the future.

We follow this approach for all the techniques based on 

machine learning, e.g., [36]. For techniques that do not require 

training, e.g., [2 ], we simply execute them over the same last 

10 folds. For techniques that train on data from other projects, 

i.e., for cross-project technique variants, we also executed 

them over the same last-1 0 -fold timeline — and we divided 

them into 1 0  project folds to do cross-project cross-validation, 

i.e., for each project, the technique is trained on 90 other 

projects and tested on its last 1 0  fold data.

Second, we respect the real-world availability of informa-

tion. That is, for selection-based techniques, when a build or 

test is skipped, the technique will not know its outcome. For 

techniques that rely on the last build or test outcome e.g., [19], 

we only inform them of the outcome of the last executed build 

or test. Additionally, when builds are skipped, we accumulate 

their code changes into the subsequent build.

C. Replicated Techniques

We replicated and studied all the techniques that have been 

proposed to improve CI by reducing the time to feedback or re-

ducing its cost. In addition to these, there are other techniques 

that were proposed before CI and that could also be applied 

for these two goals: test prioritization techniques, and test 

selection techniques. Therefore, we also replicated and studied 

a state-of-the-art technique in each of these two categories that 

were not originally proposed for CI. We summarize all our 

studied techniques in Table I.

In total, we studied 10 techniques, across two goals (re-

ducing time to feedback and cost) and two granularities (test 

and build levels). Since we also studied multiple variants of 

some techniques, our evaluation included 14 total technique 

variants. To provide a reference point, we also studied a perfect 

technique: Perfect Technique. It achieves the goal of each 

metric perfectly — it predicts which tests or builds will fail 

with 1 0 0 % accuracy, prioritizing or selecting them perfectly.

We include the detailed description for each technique in 

§IV-A and §V-A.

A. Studied Techniques
1) Test-selection Techniques: We replicated all the test- 

selection techniques that were proposed for improving CI: 

ST_Mach19 [36] and ST_Herzig15 [21]. To provide even more 

context for our study, we also evaluate a state-of-the-art test- 

selection technique: ST_Gligoric15 [18] — since test-selection 

techniques have also been proposed outside the context of CI, 

e.g., [64], [18], [63], [62], [46], [45].

ST_Gligoric15 [18] skips tests that cannot reach the changed 

files, by tracking dynamic dependencies of tests on files. A test 

can be skipped in the new revision if none of its dependent files 

changed. The rationale is that tests that cannot reach changed 

files cannot detect faults in them.

ST_Herzig15 [21] is based on a cost model, which dynam-

ically skips tests when the expected cost of running the test 

exceeds the expected cost of removing it, considering both 

the machine cost and human inspection cost [3], [22]. This 

technique tends to skip tests that mostly passed in the past or 

that have long runtime.

ST_Mach19 [36] proposes a Machine Learning algorithm 

with combined features of commit changes and test historical 

information. We studied two variants of it: one is trained in 

the past builds within the same project in which it is applied 

(ST_Mach19_W), and the other is trained in the builds of 

different software projects than the one in which it will be 

applied (ST_Mach19_C). It uses the following features: file 

extensions, change history, failure rates, project name, number 

of tests and minimal distance.

2) Build-selection Techniques: We then replicated all build- 

selection techniques that jave been proposed for improving 

CI: SB_Abd19 [2], and SB_Jin20 [27]. To provide even more 

context for our study, we also replicated a state-of-the-art 

build-prediction technique: SB_Hassan17 [20].

SB_Hassan17 [20] predicts every build’s outcome based on 

the information from last build. Builds can be skipped when 

they are predicted to pass. In our study, information from the 

previous build is blinded if the build does not get executed. 

We study two variants of this technique (SB_Hassan17_W and 

SB_Hassan17_C) as we did for ST_Mach19.
SB Abd19 [2] uses a rule-based approach to skip commits 

that only have safe changes, e.g., changes on configuration 

or document files. This technique is expected to capture most 

failing builds since it only skips builds considered safe to skip. 

SB_Jin20 [27] aims at saving CI cost by skipping passing 

builds. Their strategy is to capture the first failing build in 

a subsequence of failing builds and continuously build until 

a passing build appears. We replicated this technique under 

the configuration that provided the optimal effectiveness [27]. 

We studied three variants of this technique: SB_Jin20_W & 

SB_Jin20_C as we did previously, and also a rule-of-thumb 

variant (SB_Jin20_S) that skips builds with < 4 changed files.

B. D1: Computational-cost Reduction
We studied four metrics for D 1 . We plot the result of each 

metric in a box plot where each box represents the distribution
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of values for all the studied projects.

1) Studied Metrics: Build time saved measures the propor-

tion of total build time that is skipped among all build time 

per project. It was covered in SB_Abd19 [2].

Test time saved measures the same as the previous metric 

but in terms of test time. The previous work ST_Gligoric15 

[18] used this metric in its evaluation. It shows how much 

time applying a technique could save during the phase of test 

executions.

Builds number saved measures the proportion of builds that 

are saved among all builds. It was studied by SB_Abd19 [2] 

and SB_Jin20 [27]. It represents how many resources could 

be saved as the number of builds.

Tests number saved measures the same as the previous metric 

but in term of tests. Previous papers [18], [21] studied this 

metric. It represents how many resources could be saved 

during test executions.

2) Analysis o f Results: Comparing Metrics. When we 

compare the techniques’ test number vs. test time saved, most 

of them saved a very similar ratio of test time than ratio of 

tests (except ST_Herzig15).

When comparing build number vs. build time, build- 

granularity techniques saved a very similar ratio of build 

time as of builds. Also, test-granularity techniques saved a 

larger ratio of build time than of builds. This means that test- 

granularity techniques save build time when they skip builds 

partially — when they skipped some of their tests.

When comparing test number vs. build number, build- 

granularity techniques saved a very similar ratio of builds 

and tests. Also, test-granularity techniques saved a much 

lower ratio of builds than of tests — some dramatically 

so (ST_Herzig15 and ST_Mach19_C). This means that test- 

granularity techniques saved a low ratio of full builds.

When comparing test time vs. build time, build-granularity 

techniques saved very similar ratios of test time and build 

time. Also, test-granularity techniques saved a much lower 

ratio of build time than of test time. This observation extends 

our earlier one: every build that these techniques did not skip 

fully, and thus did not skip its build-preparation time, reduced 

their ability to save build time to an important extent.

Comparing Granularities. By comparing test vs. build- 

granularity techniques, build-granularity techniques gener-

ally saved higher build-time cost — except for SB_Abd19. 

Build-granularity techniques have the advantage of skipping 

both test-execution and build-preparation time, while test- 

granularity techniques have the advantage of skipping tests 

spread over many builds, not only on those that get fully 

skipped. Our observation implies that skipping full builds was 

a better strategy for saving cost.

Comparing Techniques. We first observed that 

SB_Mach19_C and SB_Jin20_C skipped fewer builds 

than their counterparts that were trained only with data 

within the same project (SB_Mach19_W, SB_Jin20_W). 

After having been trained with a more diverse set of build 

and tests (across many projects), these techniques became

less confident to skip them. ST_Herzig15 saved very low 

ratio of build time despite saving a large ratio of tests. This 

is because it very rarely skips tests that failed many times 

in the past — regardless of the code changes in the build. 

So, within each build, it very rarely skipped the tests with 

the most past failures — thus very rarely skipping builds 

fully. SB_Abd19 saved a median 21% build time, which is 

a relatively high amount, considering that it only skipped 

builds with non-executable changes, e.g., that only changed 

formatting or comments. ST_Mach19_W and ST_Gligoric15 

skipped a relatively high ratio of build time (competitively 

with build selection techniques) because they skipped many 

full builds. This is because they analyze the relationship 

between code changes and tests inside a build. ST_Gligoric15 

skips all tests that cannot execute the code changes, and 

ST_Mach19_W considers the distance between the changes 

and the tests in its predictor. This allows both techniques 

to fully skip those builds in which no test can execute the 

code changes — i.e., when only non-executable code was 

changed, or when no tests exist to execute the changes. 

SB_Jin20_W and SB_Jin20_S saved high ratios of build 

time, since they both focused on skipping full builds. While 

SB_Jin20_S provided higher savings, we expect it to also 

skip a higher ratio of skipped failing builds (see §IV-C) — 

SB_Jin20_S simply skips builds with <4 commits. Finally, 

SB_Hassan17_W and SB_Hassan17_C skipped too much 

build time (higher than the perfect baseline). This is because 

they mostly rely on the status of the previous build, which is 

unknown if skipped. So, as soon as they observe a passing 

build, they recurrently skip all subsequent builds.

C. D2: Missed Failure Observation

1) Studied Metrics: Proportion of skipped failing tests. 
This metric measures the undesired side effect of cost-saving 

techniques skipping some of the failing test cases. It was used 

by ST_Herzig15 [21].

Proportion of skipped failing builds. This metric measures 

the proportion of failing builds that are skipped among all 

failing builds. It was covered in SB_Jin20 [27].

2) Analysis o f Results: Comparing Metrics. All tech-

niques generally skipped a very similar ratio of failing tests 

than builds, with small differences.

ST_Mach19_C, ST_Herzig15, ST_Gligoric15, SB_Jin20_S 

skipped a slightly higher ratio of failing tests than builds. This 

is explained by test-granularity techniques skipping partial 

builds in addition to full builds, and thus they also skipped 

a higher ratio of failing tests. The case of SB_Jin20_S is 

different: it skipped a higher ratio of tests because it skipped 

fewer builds with no failing tests — few changed < 4 files.

SB_Abd19, SB_Jin20_C, ST_Mach19_W and SB_Jin20_W 

skipped a slightly higher ratio of failing builds than tests. 

This means that these techniques skipped failing builds with 

lower than average (or no) failing tests, e.g., failing due to 

configuration or compilation errors (which amount to 35% of

217

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:07:02 UTC from IEEE Xplore.  Restrictions apply. 



T3
0>ro
0E
"5m

T ! P  T
90% « 1 ?  T

♦ ° J - |  r

70% • • P

-  T40%
30%

20%

10% r 1 T  t “ I 1

>  £  a '  #  a '  $  a '  $
>5- S ' .'ft <h / J P  >

P  * '  /  ^  /  /  "  *  *

Fig. 2: Results for Cost Saving Metrics. Prioritization techniques not included, since they do not skip tests/builds.
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Fig. 3: Results for Missed Failure Observation Metrics. Pri-

oritization techniques not included, since they do not skip 

tests/builds.

failing builds). Finally, SB_Hassan17_C and SB_Hassan17_W 

skipped most failing (and passing) tests and builds.

Comparing Granularities. Build-granularity techniques gen-

erally skipped higher ratios of failing builds and tests than 

test-granularity techniques — except for SB_Abd19. They

generally skipped a higher ratio of all tests and builds.

Comparing Techniques. If we rank techniques on these two 

metrics of side-effect, we observe that they rank almost exactly 

in the opposite order as they would according to build time 

saved (for D1). This shows a clear trade-off between cost-

saving and its side effect of skipping failures.

V. Em p i r i c a l  St u d y  2. D3: Ti m e -t o -f e e d b a c k  

Re d u c t i o n

In D3, we study how much prioritization techniques advance 

the observation of failures and how much the side effect in D2 

will influence it. So, we study all the time-to-feedback and 

computational-cost reduction techniques.

A. Studied Techniques
We only describe here the techniques that we did not 

describe in earlier sections: prioritization techniques.

1) Test-prioritization Techniques: For this family of tech-

niques, we replicated all the test-prioritization techniques that 

were proposed for improving CI: PT_Elbaum14 [11] and 

PT_Marijan13 [37]. To further extend this study, we also 

replicated the state-of-the-art test case prioritization (TCP) 

technique. We chose the technique that provided the highest 

effectiveness in the most recent evaluation of TCP techniques 

[35]: PT_Thomas14 [57]. TCP was a rich research area before 

CI became a common practice, e.g., [40], [57], [10], [47]. We 

apply these techniques to prioritize tests within each build. 

PT_Marijan13 [37] prioritizes tests that failed recently or 

have a shorter duration. Tests are ordered based on their 

historical failure data, test execution time and domain-specific 

heuristics.
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Fig. 4: Results for Time-to-feedback Reduction Metrics.

PT_Elbauml4 [11] favors tests that failed either recently or 

a long time ago.

PT_Thomasl4 [57] uses topic modeling to diversity the tests 

that get executed earlier. Every prioritized test is selected if 

it contains the most different topics from the previous test in 

its identifiers and comments. The rationale behind this is that 

similar tests often find similar problems.

2) Build-Prioritization Techniques: To the extent of our 

knowledge, only one technique has been proposed to prioritize 

software builds, PB_Liangl8  [33]. PB_Liangl8 [33] executes 

builds containing a recently-failing and recently-non-executed 

test in a collision queue. We apply PB_Liangl8  to prioritize 

builds within a build waiting queue, as its previous evaluation 

did [33]. Queues form when build executions overlap in time.

B. Studied Metrics
1 ) Positions shifted for observed failing tests within a build: 

measures the shifted positions for all observed failing tests 

(prioritized or not). A similar metric to this one was used in 

the evaluations of PT_Marijanl3 [37], PT_Elbauml4 [11], and 

PT_Thomasl4 [57]. For test-selection techniques, we measure 

the average number of shifted positions for all remaining tests 

— when a test is skipped, the next one can now run one 

position earlier.

2) Positions shifted for treated failing builds: measures the 

number of builds between every treated (delayed/advanced) 

failing build’s original observation position and its new po-

sition. This metric was studied by SB_Jin20 [27]. For test- 

granularity techniques, this metric is not impacted, since the 

build is still executed in the same position. For build-selection 

techniques, we consider that when a build is skipped, it will 

run as the next build (its tests will run on it).

3) Positions shifted for all failing builds: measures the 

same as the previous one, but now across all failing builds. 

PB_Liangl8  used a similar metric in its evaluation [33]. 

Through this metric, we can understand the impact of the 

previous metric over all builds.

4) Build-queue-length saved: This is a metric designed 

by us to measure how applying a technique could relieve 

the collision problem: when multiple builds are waiting to 

be executed within a limited resource. We follow the same 

configuration in PB_Liangl8 ’s paper. The build-queue-length 

refers to the median number of builds waiting ahead for each 

build in each project. With a pre-experiment on all projects, 

we find that for only one project - ’’Rails/Rails”, the median 

value of every build’s waiting queue is bigger than 0. Thus, 

we only report the result for this metric on that project.

C. Analysis o f Results

Comparing Metrics. When comparing positions shifted for 

treated failing builds vs. all failing builds, for all techniques, 

the advance (PB_Liangl8 ) or delay (others) that they introduce 

in the observation of failing builds is much lower when 

measured across the whole population of failing builds. The 

upside of this is that the undesired effect of most techniques 

(,i.e., delay of failure observation) is very low across all failing 

builds (median 0-2 builds). The downside is that the desired 

effect of PB_Liangl8 {i.e., advance of failure observation) is 

also very low across all failing builds (median 0  builds).

Next, we compare the performance of test selection tech-

niques {i.e., the only overlapping technique family) in the 

positions that observed failing tests shifted within a build 

vs. the positions that failing builds shifted across all builds.
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We observe that test selection techniques provided some 

advancement in the observation of test failures (lower than 

most test prioritization techniques), while introducing a very 

low delay in observation of build failures (median 0 - 2 ).

Comparing Granularities. We did not observe a substan-

tial difference when comparing granularities — we observed 

stronger differences when comparing techniques.

Comparing Technique Strategies. When comparing tech-

nique strategies (prioritization vs. selection), test-selection 

techniques provided some advancement in the observation of 

failing tests within a build, but test-prioritization techniques 

provided better results overall (except PT_Elbaum14).

Comparing Techniques. PT_Marijan3  and PT_Thomas14 

behave very similarly — despite their different approaches 

to prioritization — and they are both close to perfect, prior-

itizing most tests correctly. PT_Elbaum14 provides a lower 

advancement of test failures (also lower than many test- 

selection techniques), since it uses a simpler criterion — 

prioritizing tests that were executed very recently or a long 

time ago. All test-selection techniques provided a very similar 

advancement of test-failure observation, except ST_Herzig15 

which was slightly better. Interestingly, ST_Herzig15 was 

one of the techniques with the lowest delay in build-failure 

observation (median 0 for all failing builds). At the build- 

granularity, PB_Liang18 had a very low impact in prioritizing 

builds because builds very rarely occurred concurrently in our 

dataset — only the Rails project had a meaningful number 

of concurrent builds. An important metric in PB_Liang18’s 

original evaluation was the savings in the build-queue length. 

We plot the results for all techniques for this metric in 

Figure 4. Interestingly, we also observed that test-selection 

and build-selection techniques also had a strong impact in this 

metric — less so for test-selection techniques and SB_Abd19 

because they skip fewer full builds (see §IV-B2). Regarding 

build-selection techniques, those that saved more builds (see 

§IV-B2) also saved more in the build-queue-length metric, but 

also introduced higher delays in build-failure observation.

VI. A n s w e r s  f o r  Re s e a r c h  Qu e s t i o n s  a n d  

Im p l i c a t i o n s

We synthesize our observations and we lay out their impli-

cations to advance this area of research.

A. D1: Computational-cost Reduction
1) RQ1: What design decisions did not help?: First, we 

report on missed opportunities for saving more computational 

cost. cost-saving techniques focused on skipping passing 

builds and tests, but they did not specifically target those that 
would provide the highest savings, i.e., slower tests, slower 

builds, or all tests in a build (in the case of tests-selection). 

This is demonstrated by the fact that build-granularity tech-

niques saved similar ratios of test number, test time, build 

number, and build time; and that test-granularity techniques 

saved similar ratios of test number and test time, and lower 

ratios of build time than test time.

We also learned that training cost-saving techniques 
across projects harmed their predictions. In other fields, train-

ing with data from multiple projects is considered to increase 

the accuracy of predictors. For cost-saving techniques, though, 

this exposed the techniques to more diverse sets of failures, 

making more builds/tests “look like a failure”, resulting on the 

predictors saving less cost (being less inclined to skip builds 

and tests).

Test-selection techniques were also limited in the cost that 

they could save when they did not target saving fu ll builds
— ST_Mach19_C and ST_Herzig15 saved very low build time 

despite saving a high ratio of tests. An additional aspect that 

contributed to ST_Herzig15 saving limited build time (despite 

saving high number of tests) is that i t  only used features 
characterizing the tests, but not the code changes in the build

— e.g., missing the opportunity to skip full builds for no-code 

changes.

2) RQ2: What design decisions helped?: Other design 

decisions allowed techniques to save high cost. A particularly 

useful design decision was trying to predict seemingly-safe 
builds and tests — SB_Abd19 saved 21% builds simply 

by skipping builds with no-code changes, and ST_Gligoric15 

saved 36% builds skipping tests that did not cover the code 

changed in the build.

Another decision that provided high cost savings was to 

skip fu ll builds instead of individual tests — thus also 

saving build-preparation time. Skipping all tests in a build 

allows to skip the time to prepare the build (i.e., compilation 

and other overhead like virtual machine preparation), and we 

observed that build-preparation takes a large portion of 
build time. An illustrative example is how ST_Gligoric15 

and ST_Herzig15 saved about the same ratio of test time, but 

ST_Gligoric15 saved much higher build time because it saved 

a much higher ratio of full builds.

Test-selection techniques, however, performed really well 

in terms of saving a high ratio of tests (84% by ST_Herzig15 

and 80% by ST_Machalica_W). This is because they could 

save some cost spread out across many builds — i.e., skipping 
partial builds achieved high cost savings. However, the test- 

selection techniques that skipped fu ll builds also achieved 
high savings. Intentionally or not, ST_Gligoric15 saved many 

full builds by simply skipping all tests that did not cover the 

changed code. ST_Mach19_W also saved many full builds by 

approximating the same idea: one of its predictor’s features is 

the distance between the changed code and the test.

3) Implications for Future Techniques: Our results have 

multiple implications for the design of future techniques. 

First, we encourage future techniques to consider hybrid 
approaches to save both full builds and also partial builds, 

i.e., to save cost at both build and test granularity. Future 

techniques should also leverage the beneficial factors that 

we already observed, such as skipping fu ll builds with no
code changes or no tests to cover them . To save more full 

builds, novel prediction features could be designed, targeting 
slower builds if possible — which no existing technique 

attempts. To save more tests, existing techniques already
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provide very useful features (saving a high ratio of tests), but 

other new features could be designed to target saving more 
and slower tests, and considering the relationships between 
the tests and the code changes in the build. Finally, our 

observations also show that build time saved is the metric 

that most comprehensively shows the cost saved by all existing 

techniques — even though cross-referencing multiple metrics 

allows for additional observations, as we did in this study.

B. D2: Missed Failure Observation
1) RQ1: What design decisions did not help?: In terms of 

the proportion of builds and tests that were skipped by cost-

saving techniques, we generally observe that the decisions 
that made techniques save higher cost also made them 
make more mistakes, i.e., skip higher ratios of failing builds 

and tests. It was also particularly interesting that seemingly- 
safe techniques — SB_Abd19 and ST_Gligoric15 — still 

showed pretty high ratios of skipped failing builds and 
tests. ou r study thus shows that skipping builds with no-code 

changes or without tests to execute them is not enough to 

guarantee that they will not fail. A quick look discovered that 

the builds and tests skipped by these techniques failed for 

different reasons, such as configuration or compilation errors 

(present in 35% of failing builds).

2) RQ2: What design decisions helped?: one design de-

cision that reduced the skipped failing tests and builds was 

training techniques across projects. All the _C variants 

skipped lower ratios than their _W counterparts (except 

SB_Hassan17_C). Also test-granularity techniques gen
erally skipped lower ratios of failing tests than build- 

granularity techniques did of builds.

3) Implications for Future Techniques: These results imply 

multiple recommendations for future techniques. First, future 

techniques should design novel features to predict failures 
that are caused by no-code changes, e.g., configuration 

changes, to avoid assuming that seemingly-safe builds will 

not fail. Second, future techniques should attempt to break 
this trade-off between saving cost and skipping failures. 

Existing techniques generally increase cost savings by also in-

creasing missed failure observations. Future techniques should 

attempt to improve one of the two dimensions by keeping 

the other one fixed (or optimal). Finally, future studies should 

propose new metrics to better assess the trade-off between 
cost-saving and skipped-failures of various techniques — 

since most techniques succeed in one at the expense of the 

other. SB_Jin20 [27] proposed the harmonic mean of the 

two as a balanced metric, but further study is granted to 

understand whether both should be valued equally or in a 

weighted manner — particularly considering the much higher 

ratio of passes to failures in CI datasets.

C. D3: Time-to-feedback Reduction

1) RQ1: What design decisions did not help?: Unsurpris-

ingly, build-selection techniques did not advance the obser
vation of build failures at all, but at least they introduced very 

low delays in the observation of failing builds (and also saved

some computational cost). Similarly, test-selection techniques 
also introduced a small delay in the observation of test 
failures. Build-prioritization also showed very limited ad
vancement in observing failing builds, but that was mainly 

because only one of our studied projects (open-source) had 

some contention in the build queue. We expect that industrial 

software project would obtain a much higher benefit from this 

approach. Finally, we also observed that the build-selection 

techniques that produced higher cost savings also introduced 
higher delays in build-failure observation, showing again 

the tension between both goals.

2) RQ2: What design decisions helped?: The best tech
niques to provide early feedback were test-prioritization 
techniques. In fact, PT_Thomas14 provided near perfect re-

sults. We also found that test-selection techniques provided 
lower, but competitive advancement of test failure obser
vation, while also providing some cost savings. For exam-

ple, ST_Herzig15 provided high advancement of test-failure 

observation within a build, with very low delay of build- 

failure observation, while also saving some computational 

cost. Similarly, we observed that build-selection techniques 
could also provide reductions in build-queue-length that 
were competitive with build prioritization .

3) Implications for Future Techniques: For future tech-

niques, we recommend to combine test prioritization with 
test selection techniques — since prioritization techniques 

could stop after the first failure is identified, and save the cost 

of running the remaining tests. We found that test-prioritization 

techniques already reached very high results (PT_Thomas14 is 

near perfect), so the features that they use could be also very 

useful for test selection to save cost. Conversely, existing test- 

selection techniques that already perform very well for cost- 

savings (e.g., ST_Herzig15) could be improved in their ability 

to advance failure observation. Similarly, we recommend to 

further study the application of build-selection techniques to 
provide early observation of build failures by reducing the 

build queue via skipping builds in industrial projects in which 

parallel build requests are a larger issue. Finally, there is also 

space to develop new metrics that could capture the balance 

that techniques provide across all dimensions D1-D3.

D. Standing on the Shoulders o f Giants
our findings confirm and extend previous work:

1) D1: Beller et al. [4] observed that test time is a low 

proportion of build time. We extend this observation by finding 

that our studied test-selection techniques infrequently skipped 

full (all tests within) builds, which strongly limited their cost-

saving ability. We thus recommend test-selection to incentivize 

skipping full builds to save higher cost in CI.

2) D2: Jin and Servant [27] observed a trade-off of higher 

cost savings incurring more missed build failures in their 

technique. We extend this observation by finding that all our 

studied techniques were affected by that trade-off (techniques 

ranked equally by cost savings as by missed failures). We 

additionally identified clear strategies that made techniques 

miss fewer failures: training across projects, and operating
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at test granularity. We also observed that a seemingly-safe 

technique [2] still missed a high ratio of failures. Finally, we 

elicited the need for better prediction of safe builds, and new 

metrics to compare trade-offs.

3) D3: Herzig et al. [21] found that their test-granularity 

technique incurs low delay in build-failure observations. We 

extend this observation by finding that all our other stud-

ied test-granularity techniques also incur low build-failure- 

observation delay, measured across all failing builds.

VII. Th r e a t s  t o  Va l i d i t y

A. Internal Validity
To guard internal validity, we carefully tested our evaluation 

tools on subsets of our dataset while developing them.

Our analysis could also be influenced by incorrect in-

formation in our analyzed dataset. For this, we studied a 

popular dataset that is prevalent among continuous integration 

studies: TravisTorrent [6 ]. Furthermore, many of our studied 

techniques [2], [20], [27], [33] were originally evaluated on 

TravisTorrent projects. Additionally, we extensively curated 

TravisTorrent, removing: toy projects following standard prac-

tice [25], [42], unusable projects for test-granularity tech-

niques, and cancelled builds as in past work [14], [26], [44]. 

Finally, we also followed the advice in Gallaba et al. ’s study 

[14] to consider the nuance in the TravisTorrent dataset. We 

did so in the following ways: (1) We considered passing builds 

with ignored failures as passing. Developers manually flag 

such failures to be ignored when they cannot officially support 

them [14], and thus should not represent the status of the 

build. (2) We considered builds that fail after another failure 

as correctly labeled, because they flag an unsolved problem, 

being informative for developers. (3) We considered failing 

builds with passing jobs as failing builds. If at least one job 

fails, it signals a problem, informing developers.

our results may also be affected by flaky tests causing 

spurious failing builds. However, CI systems are expected to 

function even in the presence of flaky tests, since most com-

panies do not consider it economically viable to remove them, 

e.g., [36], [39]. Besides, cross validation may make unrealistic 

use of chronological events To address this problem, we used 

time-based cross validation [7].

our observed build and test runtimes may have been influ-

enced by the load experienced in the build server at the time. 

However, we consider this potential impact to be very low, 

since we observed that the standard variance in test duration 

across builds was 0.5 seconds.

B. External Validity
To increase external validity, we selected the popular dataset 

TravisTorrent, which has been analyzed by many other re-

search works. The projects we chose were all Java or Ruby 

projects, because there are no projects with other programming 

languages in the data set. Although these two programming 

languages are popular, different CI habits in other languages 

may provide slightly different results to the ones in this 

study. ou r observations may slightly vary for separate software

projects, but our goal was to derive general observations for a 

real-world population of software projects.

C. Construct Validity
A threat to construct validity is whether we studied software 

projects that are similar to those that suffer most accutely 

from high CI cost and delays in failure observation, e.g., the 

projects at Google [24] and Microsoft [21]. We studied the 

TravisTorrent dataset, which is the standard dataset used in the 

literature to evaluate techniques to save cost in CI [2], [27], 

[33], [9]. one of our studied projects (Rails) is particularly 

similar to industrial software projects. Rails was used along-

side two other Google datasets to evaluate PB_Liang18 et al. 
[33], and it had similar magnitudes of test suites (thousands), 

test executions (millions) and test execution time (millions of 

seconds).

Nevertheless, early observation (or prediction) of build 

failures is beneficial, regardless of how much load a project's 

CI system experiences. It allows developers to not have to 

wait for builds to finish, which is the motivation of multiple 

previous works, e.g., [20], [2]. In particular, Abdalkareem et 
al. [2 ] found that developers from small projects — as small 

as 168 commits — also chose to manually skip commits in CI 

to save time. These savings can be substantial for the projects 

in our studied dataset: test-suite runtime varies from project 

to project (median 2.3 mins, 75th percentile 26 mins) but, 

more importantly, saving full builds could save much higher 

cost (median 14 mins, 75th percentile 52 mins). Also, many 

builds (20%) take longer than 30 minutes [4]. Test-selection 

could save higher cost if it leaned harder towards skipping full 

builds, but we found in this study that this incentive is not yet 

strongly leveraged by our studied test selection techniques.

VIII. Re l a t e d  Wo r k

A. Empirical Studies o f CI and its Cost and Benefit
Multiple researchers focused on understanding the practice 

of CI, studying both practitioners e.g., [24] and software 

repositories [60]. Vasilescu et al. studied CI as a tool in social 

coding [59], and later studied its impact on software quality 

and productivity [60]. Zhao et al. studied the impact of CI 

in other development practices, like bug-fixing and testing 

[65]. Stahl et al. [56] and Hilton et al. [24] studied the 

benefits and costs of using CI, and the trade-offs between 

them [23]. Lepannen et al. similarly studied the costs and 

benefits of continuous delivery [31]. Felidre et al. [12] studied 

the adherence of projects to the original CI rules [13]. other 

recent studies analyzed testing practices [16], difficulties [43] 

and pain points [61] in CI.

The high cost of running builds is highlighted by many 

empirical studies as an important problem in CI [24], [23], 

[43], [61], [21] — which reaches millions of dollars in large 

companies, e.g., at Google [24] and Microsoft [21]. People 

[23], [60] believe that the benefit of CI is mainly lying in 

the early fault detection. Others [24], [31] find that projects 

adopting CI are able to adopt pull requests and release in a 

shorter time. Some also find that CI can help developer team
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in other areas such as providing a common build environment 

[23] and increasing team communication [56].

B. Approaches to Reduce Time-to-feedback in CI
A related effort for improving CI aims at speeding up its 

feedback by prioritizing its tasks. The most common approach 

in this direction is to apply test case prioritization (TCP) 

techniques e.g., [35], [40], [11], [37], [10], [47], [67] so that 

builds fail faster. These techniques, even though not designed 

to work in CI environment, have been claimed to have a 

potential to provide CI users earlier fault observation. An-

other similar approach achieves faster feedback by prioritizing 

builds instead of tests [33]. Their paper grants higher priority 

to those builds that are more likely to fail according to the 

historical failing information and works well for those projects 

that have a ton of collision issues. Naturally, these kinds of 

techniques don’t provide benefit in saving the cost. In this 

paper, we study both test-prioritization techniques as well as 

build-prioritization techniques in terms of advancement of fail-

ure observation and compare them with selection techniques.

C. Approaches to Reduce Cost o f CI
A popular effort to reduce the cost of CI focuses on 

understanding what causes long build durations e.g., [17], [58]. 

Thus, most of the approaches that reduce the cost of CI aim 

at making builds faster by running fewer test cases on each 

build. It is found that a ton of passing tests could be saved in 

this way [29]. Some approaches use historical test failures to 

select tests [21], [11]. Others run tests with a small distance 

to code changes [38] or skip testing unchanged modules [55].

Recently, Machalica et al. predicted test case failures using 

a machine learning classifier [36]. These techniques are based 

on the broader field of regression test-selection (RTS) e.g., 
[6 6 ], [64], [18], [63], [62], [46], [45]. While these techniques 

focus on making every build cheaper, other work addresses the 

cost of CI differently: by reducing the total number of builds 

that get executed. A related recent technique saves cost in CI 

by not building when builds only include non-code changes 

[2], [1]. They firstly create a rule-based selection technique 

and then take advantage of machine learning algorithm to 

improve the accuracy. Then Jin and Servant propose a build 

strategy that developing team should skip those less informa-

tive passing builds through build outcome prediction. Finally, 

other complementary efforts to reduce build duration have 

targeted speeding up the compilation process e.g., [8 ] or the 

initiation of testing machines e.g., [15]. In this paper, we refer 

cost-reduction techniques as selection techniques. We pick 

techniques in both build-selection techniques and test-selection 

techniques and examines their performance in different cost-

saving and fault-observation metrics.

D. Evaluation frameworks for similar techniques
Multiple research works focus on comparing cross-tool 

performance with an evaluation framework. Zhu et al. [6 6 ] 

propose a regression test selection framework to check the 

output against rules inspired by existing test suites for three

techniques. Leong et al. [30] propose a test selection algorithm 

evaluation method and evaluate five potential regression test 

selection algorithms, finding that the test selection problem 

remains largely open. Najafi et al. [41] studied the impact 

of test execution history on test selection and prioritization 

techniques. Luo et al. [35] conduct the first empirical study 

comparing the performance of eight test prioritization tech-

niques applied to both real-world and mutation faults and find 

that the relative performance of the studied test prioritization 

techniques on mutants may not strongly correlate with perfor-

mance on real faults. Lou et al. [34] systematically created a 

taxonomy of existing works in test-case prioritization, classi-

fying them in: algorithms, criteria, measurements, constraints, 

scenarios, and empirical studies.

Differently to these works, our study in this paper specifi-

cally targets the context of CI, and it has a broader focus than 

test prioritization or selection. Our study is the first to compare 

all the techniques proposed to reduce time-to-feedback or cost 

in CI, including prioritization and selection techniques, at test 

and build granularities. We performed observations comparing 

across 2 goals, 3 dimensions, 10 metrics, 2 granularities, and 

10 techniques. Most of our observations required comparisons 

at broad scope. For example: we revealed the need for a new 

incentive in test selection to skip full test suites (to also save 

build-preparation time), which would not be relevant in studies 

outside the scope of CI.

IX. Co n c l u s i o n s  a n d  Fu t u r e  w o r k

In this article, we performed the most exhaustive evaluation 

of CI-improving techniques to date. We evaluated 14 variants 

of 10 CI-improving approaches from 4 families on 100 real- 

world projects. We compared their results across 10 metrics 

in 3 dimensions. We derived many observations from this 

evaluation, which we then synthesized to understand the 

design decisions that helped each dimension of metrics, as well 

as those that had a negative impact on it. Finally, we provide a 

set of recommendations for future techniques in this research 

area to take advantage of the factors that we observe were 

beneficial, and we lay out also future directions to improve 

on those factors that were not. We lay out plans to combine 

approaches at test and build granularities to save further costs, 

and to combine selection and prioritization approaches to 

improve on the early observation of failures while also saving 

some cost. Such techniques could consider additional history- 

based prediction features, such as the project’s code-change 

history, e.g., [50], [51], [49], [53], [54], since test-execution 

history was beneficial for some techniques, e.g., [21]. We 

also discuss the need of future metrics to capture the various 

characteristics of these techniques in a more holistic way. 

In the future, we will work on designing a comprehensive 

technique that combines selection and prioritization as well 

as build and test granularities to maximize the benefit of CI 

while reducing its cost as much as possible.

X. Re p l i c a t i o n

We include a replication package for our paper [28].
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