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ABSTRACT

Continuous integration (CI) is a widely used practice in modern
software engineering. Unfortunately, it is also an expensive practice
—Google andMozilla estimate their CI systems inmillions of dollars.
In this paper, we propose a novel approach for reducing the cost of
CI. The cost of CI lies in the computing power to run builds and its
value mostly lies on letting developers find bugs early — when their
size is still small. Thus, we target reducing the number of builds
that CI executes by still executing as many failing builds as early
as possible. To achieve this goal, we propose SmartBuildSkip, a
technique which predicts the first builds in a sequence of build fail-
ures and the remaining build failures separately. SmartBuildSkip
is customizable, allowing developers to select different preferred
trade-offs of saving many builds vs. observing build failures early.
We evaluate the motivating hypothesis of SmartBuildSkip, its pre-
diction power, and its cost savings in a realistic scenario. In its most
conservative configuration, SmartBuildSkip saved a median 30%
of builds by only incurring a median delay of 1 build in a median
of 15% failing builds.
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1 INTRODUCTION

Continuous integration (CI) is a popular practice in modern soft-
ware engineering that encourages developers to build and test their
software in frequent intervals [15]. For simplicity and consistency
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with previous studies, we refer as build to the full process of building
the software and running all the tests when CI is triggered.

While CI is widely recognized as a valuable practice, it also incurs
a very high cost — mostly for the computational resources required
to frequently run builds [24–26, 45, 70]. Overall, adopting CI can be
very expensive. Google estimates the cost of running its CI system
in millions of dollars [26], and Mozilla estimates theirs as $201,000
per month [31]. For smaller-budget companies that have not yet
adopted CI, this high cost can pose a strong barrier.

In this paper, we aim to reduce the high cost of CIwhile keep-
ing as much of its value as possible. The cost of CI is commonly
defined by the cost of builds [26, 43], and its value is defined by its
ability to reveal problems early [10, 15]. Thus, we aim to reduce
the cost of CI by running fewer builds, while running as many

failing builds as early as possible. Our goal also responds to
the need to run fewer builds that developers frequently express in
Q&A websites[61], which they currently may approach by using
CI plug-ins [8, 29, 64] to manually skip builds that they deem “safe”,
e.g., changes in README files.

Existing research approaches to save cost in CI include the au-
tomatic detection of such non-code changes [2] and techniques to
make CI builds faster [24, 37]. In contrast, our proposed approach
focuses on skipping builds that are predicted to pass in more com-
plicated cases — for any kinds of changes that happened between
builds. Our approach complements existing techniques and could
potentially be applied in combination with them.

We propose SmartBuildSkip, a novel approach to reduce the
cost of CI based on automatic build-outcome prediction — by skip-
ping builds that it predicts will pass, and running builds that it
predicts will fail. Our strategy is motivated by two hypotheses: H1:
Most builds in CI return a passing result. We expect that software
changes will generally be done carefully, making passing builds
more common than failing builds. By this hypothesis, skipping pass-
ing builds would produce large cost savings.H2:Many failing builds

in CI happen consecutively after another build failure. One of the
strongest predicting factors in existing build-outcome predictors
is the result of the previous build [23, 43, 73]. Also, Rausch et al.

observed build failures mostly occurring consecutively in a small
number of Java projects [47]. By this hypothesis, most failing builds
could be easily predicted — since most follow another build failure.

Thus, SmartBuildSkip differentiates between first failures
and subsequent failures, following a two-phase process. First,
SmartBuildSkip uses a machine-learning classifier to predict build
outcomes to catch first failures. After it observes a first failure, it
then determines that all subsequent buildswill fail — until it observes
a build pass and then changes its operation to predicting again. This
strategy aims to address the limitations of existing build-prediction
approaches [23, 43, 73], which strongly rely on the outcome of the
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last build, and predict outcome for all builds — likely incorrectly
predicting some first and subsequent failures.

Lastly, we propose SmartBuildSkip as a customizable tech-
nique, in order to help software developers with different cost-
saving trade-off needs, e.g., preferring modest effort savings and
low delays in observing build failures, or preferring high effort
savings with a longer delay to observe build failures.

We performed two empirical studies and two experiments. First,
we empirically studied the hypotheses that motivate SmartBuild-
Skip. Second, we empirically studied the features that predict first
failures, to inform SmartBuildSkip’s predictor. Third, we per-
formed an experiment to evaluate SmartBuildSkip’s ability to
predict first and all failures in a dataset of 359 software projects
and another one of 37 projects. Fourth, we performed another ex-
periment to measure the cost savings that SmartBuildSkip would
produce in our studied datasets.

In our experiments, we compared SmartBuildSkip’s perfor-
mance with the state-of-the-art build prediction technique, HW17
[23]. HW17 makes machine-learning predictions for all builds, us-
ing both historical and contemporary build information. To the
extent of our knowledge, HW17 is the build-prediction technique
that currently provides the highest precision and recall.

SmartBuildSkip provides two major strengths over HW17: (1)
SmartBuildSkip runs predictions only for first failures, and deter-
mines that all subsequent builds fail until a pass is observed. (2)
SmartBuildSkip predicts based only on features describing the
current build and the project (using no features about the previous
build). We found that this strategy was more effective at predicting
both first and subsequent failures (see §7). Additionally, we found
that, by not relying on the outcome of the previous build, Smart-
BuildSkip was much more effective in practice. Since the previous
build was often skipped and its outcome unknown, HW17 was
negatively impacted, but not SmartBuildSkip (observed in §8).

The results of our studies support our hypotheses — build passes
are numerous (median 87% of all builds), and subsequent failures

are also a high proportion of all build failures (median 52%). In our
experiments, SmartBuildSkip significantly improved the accuracy
of the state-of-the-art build predictor — up to median 8% F-measure
for first failures, and up to median 52% F-measure for all failures.
Finally, SmartBuildSkip’s predictions resulted in high savings of
build effort that could be customized for developers with differ-
ent preferred trade-offs, i.e., faster observation of build failures vs.
higher savings in build effort. In its most conservative configura-
tion, SmartBuildSkip saved a median 30% of all builds by only
incurring a median delay of 1 build in a median 15% build failures. In
a more cost-saving-focused configuration, SmartBuildSkip saved
a median 61% of all builds by incurring a 2-build delay for 27% of
build failures. This paper provides the following contributions:

• The conceptual separation of build failures into first and
subsequent failures, to improve the effectiveness of build
prediction models.

• Two studies, of the prevalence of build passes over build
failures, and of subsequent failures over first failures.

• A study of factors that predict first failures.
• SmartBuildSkip, a customizable, automatic technique to
save cost in CI by predicting build outcomes, that can be

applicable with or without training data, and that improves
the prediction effectiveness of the state-of-the-art.

• A collection of simple predictors, based on factors that pre-
dict first failures, that can be applied as a rule-of-thumb, with
no adoption cost.

• An evaluation of the extent to which SmartBuildSkip can
save cost in CI while keeping most of its value, with the
ability of customizing its cost-value trade-off.

2 MOTIVATING HYPOTHESES

We motivate our hypotheses and our proposed approach with an
example. Figure 1 depicts an example timeline of builds, the ideal
timeline in which we would save most effort, the timeline produced
after applying a state-of-the-art build prediction technique, and the
timeline produced after applying our approach SmartBuildSkip.
The example timeline shows a numbered sequence of builds in CI.
We depict passing builds as circles with a P and failing builds as
circles with an F. The ideal timeline shows the outcome that an
ideal technique would achieve — skipping every passing build and
building all failing builds. We depict skipped builds with a dashed
empty circle. This ideal timeline depicts our goal of saving cost
in CI by running as few builds as possible while running as many
failing builds as possible.

We propose SmartBuildSkip following two main hypotheses:
H1: Most builds in CI return a passing result. If this was true,
our strategy of predicting build outcomes and skipping those ex-
pected to pass would provide substantial cost savings — since
passing builds would be a majority and they would be skipped.
H2: Many failing builds in CI happen consecutively after an-

other build failure. If true, if we built an automatic approach that
predicted that subsequent builds to a failing build will also fail, we
would correctly predict a substantial portion of failing builds.

First failures vs. subsequent failures. Assuming that our hy-
pothesis H2 would be supported, we also propose the distinction
between first failures — the first build failure inside a sequence of
build failures — and subsequent failures — all the remaining consec-
utive build failures in the sequence. Figure 1 highlights first failures
with gray fill.

Limitations of existing work. Figure 1 also illustrates the limi-
tations of applying existing build predictors (e.g., [23, 43, 73]) to
the problem of saving cost in CI by skipping passing builds. The
timeline for “existing build predictors” uses a diamond to depict the
prediction of the outcome of an upcoming build. If the upcoming
build is predicted to pass, the technique skips it and transitions to
predict for the next build. We depict this with an arrow leaving the
diamond and going into the next diamond, e.g., in build 2. If the
upcoming build is predicted to fail, it is executed. We depict this
with an arrow leaving the diamond and going into the next build.
We posit that existing predictors, by not distinguishing first and
subsequent failures, likely provide limited accuracy for both.

Limited prediction of first failures. We posit that existing predictors
will rarely correctly predict first failures, because they strongly rely
on the status of the previous build for prediction. first failures are
preceded by a build pass, by definition. However, we expect that
it’s more often build passes that are preceded by a build pass. Thus,
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Figure 1: Motivating example timeline. first failures are highlighted in gray. In an ideal timeline, we would skip all passing

builds and run all failing builds. Existing approaches predict outcome for every build. Our approach predicts build outcome

if the last build passed. After observing a failure, it continues building until a pass is observed and it goes back to predicting.

after observing a build pass, we expect that existing predictors
will more likely predict another build pass to follow — likely not
catching many first failures. SmartBuildSkip, in turn, does not
suffer from this limitation, since it does not rely on the outcome of
the last build for its prediction.

Limited prediction of subsequent failures. Since existing techniques
predict outcome for all builds — even after observing a first fail-
ure, they may incorrectly predict some subsequent failures to pass.
SmartBuildSkip, in turn, will correctly anticipate subsequent fail-
ures, since it does not make predictions for them. Instead, it deter-
mines that subsequent builds to a failure will also fail.

3 OUR APPROACH: SMARTBUILDSKIP

We designed SmartBuildSkip by following the two hypotheses
that we described in §2. We also include the timeline produced by
SmartBuildSkip for our motivating example in Figure 1.

SmartBuildSkip’s overall strategy. SmartBuildSkip follows
a two-phase strategy. In its first phase, SmartBuildSkip predicts
the outcome of the next build based on a set of predicting features
(see §6). If the build is predicted to pass, it is not executed — its
cost is saved — and SmartBuildSkip will predict again for the next
build. An example is build 5 in Figure 1. If the build is predicted
to fail, SmartBuildSkip executes it and checks its outcome. If the
actual outcome of the executed build is pass, SmartBuildSkip will
predict again for the next build — as in build 8 in Figure 1. If the
actual outcome of the executed build is fail, SmartBuildSkip will
shift to its second phase — as in build 2 in Figure 1. In its second
phase, SmartBuildSkip determines that all subsequent builds will
fail and thus executes them until the build passes, after which it
returns to the first phase — as in builds 2–4 in Figure 1.

The benefit of this two-phase strategy is that we expect Smart-
BuildSkip to be more successful at identifying both first failures

and subsequent failures, by treating them separately. We expect it
to predict first failures better than existing techniques, since we
train SmartBuildSkip’s predictor using features that specifically
predict first failures. We also expect it to accurately predict most
subsequent failures by determining that all builds after a failing one
will also fail.

The downside of this approach is that, by continuously building
after observing a first failure, one false positive is guaranteed for

every sequence of failures — as in builds 5 and 8 in Figure 1. How-
ever, we believe that this downside is smaller than the benefit that
SmartBuildSkip gets from its overall strategy. Besides, existing
predictors will also likely incur in these false positives because
they strongly rely on the last build status — which in these cases
is a bad predictor. Finally, we argue that these first-pass builds are
valuable for practitioners, because they inform them of when they
have fixed the problem that caused the build to fail.

SmartBuildSkip’s Variants.We propose two variants of Smart-
BuildSkip. Both variants use a random forest classifier to predict
builds. Since our focus is to correctly predict failing builds, and since
we expect CI build output to often be imbalanced, SmartBuildSkip
trains with a class weight of 20:1 in favor of failing builds.
SmartBuildSkip-Within: This variant is trained in the past

builds within the same software project in which it is applied.
It uses the build features that we report in §6.

SmartBuildSkip-Cross: This variant is trained in the past builds
of different software projects than the one in which it will
be applied. It uses the build features as well as the project
features that we report in §6. We propose this variant to
help with the cold-start problem [71] in software projects
for which only a few builds have been executed and they
would not be enough to provide high-quality predictions.

4 RESEARCH QUESTIONS

We perform two empirical studies to test our hypotheses and inform
the design of SmartBuildSkip. Then, we perform two experiments
to evaluate it. In our studies and experiments, we answer the fol-
lowing research questions:
Empirical Study 1: Evaluating our Motivating Hypotheses

RQ1: Are passing builds more numerous than failing builds?
RQ2: Are subsequent failures numerous?
Empirical Study 2: Characterizing first failures
RQ3: What features predict first failures?
Experiment 1: SmartBuildSkip for Build Prediction

RQ4: How effective is SmartBuildSkip predicting first failures?
RQ5: How effective is SmartBuildSkip predicting all failures?
Experiment 2: SmartBuildSkip for Build Effort Reduction

RQ6: How many resources, i.e. builds, will SmartBuildSkip save?
RQ7: What is the value trade-off for such resource savings?
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Study Subjects. We perform our study over the TravisTorrent
dataset [3], which includes 1,359 projects (402 Java projects and 898
Ruby projects) with data for 2,640,825 build instances. We remove
“toy projects” from the data set by studying those that are more than
one year old, and that have at least 200 builds and at least 1,000 lines
of source code, which is a criteria applied in multiple other works
[27, 43]. After this filtering, we obtained 274,742 builds from 359
projects (53,731 failing builds). We focused our study on builds with
passing or failing result, rather than error or canceled — since they
can be exceptions or may happen during the initialization and get
aborted immediately before the real build starts. Besides, in Travis
a single push or pull-request can trigger a build with multiple jobs,
and each job corresponds to a configuration of the building step
[16, 81]. We did a preliminary investigation of these builds and
found that these jobs with the same build ID normally share the
same build result and build duration. Thus, as many existing papers
have done [16, 28, 48], we considered these jobs as a single build.
We applied LOD [60] to remove outliers that have higher or lower
than three standard deviations above or below the mean number
of the failing ratio.

5 EMPIRICAL STUDY 1: EVALUATING OUR

MOTIVATING HYPOTHESES

RQ1: Are passing buildsmore numerous than failing builds?

We first evaluate our motivating hypotheses to understand if our
approach to save build effort in CI is promising. Our first hypothesis
posits that passing builds will be numerous — and thus skipping
them would provide high build-effort savings in CI.

Research Method. We measured the ratio of passing builds to all
builds in each studied project, and we show the distribution of such
ratios in Figure 2.

Result. For most projects, the passing builds represented a very large
proportion — with a median 88% (and a mean 84%) of all builds
passing. This result supports our hypothesis that skipping passing
builds would strongly save build effort in CI, since they generally
represented a large portion of the executed builds. Furthermore,
this result also shows the upper bound for how many builds could
be saved — given a “perfect” technique that would correctly predict
every single passing build.

RQ2: Are subsequent failures numerous? Our next hypothesis
posits that subsequent failures will be numerous — and thus pre-
dicting that subsequent builds to a failing build will also fail would
correctly predict a substantial portion of failing builds.

Research Method.Wemeasured the proportion of subsequent failures
to all failures for each project (e.g., in a build history P-F-F-F-P,
the ratio of subsequent failures to all failures is 2/3). We show the
distribution of these proportions for all projects in Figure 3.

Result. Figure 3 supports the hypothesis that subsequent failures are
numerous, i.e., there are many of them. A high number of projects
had a high (i.e.,, not low) ratio of subsequent failures: >52% for 50% of
projects, and >38% for >75% of projects. Thus, our approach would
correctly predict a high proportion of all build failures, since we
expect it to correctly predict all subsequent failures. Once it observes
a failure, it would correctly predict all the subsequent ones.
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Figure 2: Ratio of passing builds to all builds. Passing builds

represent a vast portion of all builds.
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Figure 3: Ratio of subsequent failures to all build failures.
More than half of all build failures are subsequent failures.

6 EMPIRICAL STUDY 2: CHARACTERIZING

FIRST FAILURES

RQ3: What features predict first failures? We found that sub-
sequent failures are numerous and easy to predict. Next, we will
focus on predicting first failures. To inform our prediction tech-
nique, we perform a second empirical study to identify features
that characterize them.

Research Method. We study two different kinds of features to
characterize first failures: build features and project features. As
build features, we selected all the features included in TravisTorrent
that previous studies found to be correlated with all build failures,
e.g., [27, 47]. Our goal was to study whether such features are
also correlated with first failures. Then, to be able to address the
cold-start problem [71], we also created four project features that
could be used for cross-project predictions. Our intuition is that
project features would aid the classifier in “adapting” its trained
model across projects of different characteristics — since projects
using continuous integration are diverse [18]. To the extent of our
knowledge, no previous work studied the correlation between all

build failures (or first failures) and these project features (as defined
by us, with a single value per project). We list in Table 1 the features
that we studied, along with a brief description.

Build features. Build features will be useful to train our approach
with past builds from the same software project. To identify build
features that have a relationship with first failures, we first removed
subsequent failures from our studied dataset (§4).

Then, we measured the correlation between the ratio of first fail-
ures to all builds (which now only included first failures and passing
builds) and each studied build feature in each studied project. For
each value of a build feature in a project, we measured the ratio
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Table 1: Features studied for correlation with first failures.

Build features

Feature Short Description

src_churn (SC) The number of changed source lines since
the last build.

file_churn (FC) The number of changed source files since
the last build.

test_churn (TC) The number of changed test lines since the
last build.

num_commit (NC) The number of commits since the last build.
Project_performance_short
(PS)

The proportion of passing builds in the re-
cent five builds.

Project_performance_long
(PL)

The proportion of passing builds in the
whole previous builds.

Time_frequency (TF) The time gap (hour) since the last build.
Failure_Distance (FD) The number of builds since the last failing

build.
Week_day (WD) The weekday [0, 6] (0 being Monday) of the

build.
Day_time (DT) The time of day [0, 23] of the build.

Project features

Feature Short Description

Team_size (TS) The median number of developers over the
project’s CI usage history.

Project_size (PS) The median number of executable produc-
tion source lines of code in the repository
over the project’s CI usage history.

Project_age (PA) The time duration between the first build
and the last build for that project.

Test_density (TD) The median number of lines in test cases
per 1000 executable production source lines
over the project’s CI usage history.

of first failures to all builds that have that value for that feature in
the project. For continuous features, such as src_churn, we use the
Pearson correlation coefficient as effect size and its corresponding
p-value for the significance test. For categorical variables, such as
week_day, we measure effect size using Cramér’s V and we use
Pearson’s X2 for the statistical significance test.

Project features. Project features will be useful to train our approach
with past builds from other software projects. When no (or few) past
builds are available for a software project, we could use past builds
from different software projects to train our predictor. This situation
is known in machine learning as the cold-start problem [71]. In
such cases, our predictor will use project features to learn how
representative past builds from other projects are for the project
for which not enough past builds existed.

As we did to study build features, we also removed subsequent

failures to study project features. Then, we measured the correla-
tion across projects between the value of each project feature and
the project’s ratio of first failures to all builds. Since all features
were continuous, we applied Pearson’s correlation coefficient and
decided statistical significance for p < 0.05.

Results. We report the results of our correlation analysis for build
and project features.

Build features

SC 73.54% FC 77.43% TC 50.60% NC 58.70% PS 13.65% PL 23.12% TF 19.22% FD 11.42%
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Figure 4: Correlation between build-features and ratio of

first failures. Four build features (SC, FC, TC, NC) had a

statistically significant correlation for more than 50% of

projects.
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Figure 5: Correlation between project features and ratio of

first failures. The correlationwas statistically significant for

three project features: PS, TD, PA.

Build features.We show in Figure 4 the correlation between different
build features and the ratio of first failures. Each box in the box plot
represents the distribution of correlation coefficients between a
feature (see Table 1) and the ratio of first failures, for all the projects
for which that feature’s correlation was statistically significant
(p < 0.05).We report the percentage of projects for which a feature’s
correlation was statistically significant in its label in the X axis.

We observe that different build features were differently related
to first failures For example, PS (project_performance_short) had a
median correlation of -0.94, which means that the build was more
likely to pass when there are more passing builds in its last five
builds and it has a strong correlation. However, this correlation was
only statistically significant in 13.65% of projects.

For the design of our technique, we will train on the features
that had a strong correlation with the ratio of first failures and their
results were statistically significant in at least 50% of projects. Four
features had these characteristics, the numbers of: changed lines
(SC), changed files (FC), changed test lines (TC), and commits since
the last build (NC).

A clear implication of these build features being related to first

failures is that, as changes accumulate in code —measured as any of
these four build features — without a failing build being observed,
the likelihood of the next build to fail becomes increasingly high.
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For the two categorical features (WD and DT), the results are statis-
tically significant in only 10.36% and 12.32% of all projects, and their
corresponding mean values of Cramér’s V are 0.1308 and 0.2483.

Another interesting observation is that most of the build features
that did not show strong statistical correlation with first failures are
those that intuitively would be strongly correlated with subsequent

failures instead. That is, subsequent failures happen after a particu-
larly short number (zero) of failing builds (FD), after a particularly
low proportion of passing to failing builds (PS, PL), and probably
a particularly short time after another build (TF). Intuitively, first
failures would not particularly have any of these characteristics.

Project features. We use a bar chart to show each project feature
and its corresponding correlation coefficient. The value following
the name of each project feature represents its corresponding p-
value. We found three project features for which first failures were
more prevalent, i.e., for which the project feature increased and its
difference is statistically significant (Figure 5): test density (TD),
project size (PS), and project age in CI (PA). These are the features
that we will use to design our technique to train across projects.

In simpler words, we observed that our studied projects had a
larger ratio of first failures when they had larger test cases, more
lines of code, or had been using CI for longer. This could mean that,
as software projects mature, more bugs affect their builds and/or
they get better at catching them. We posit that our observation
is likely a combination of both phenomena — intuitively, larger
projects have more points of failure and larger test suites are better
at catching problems. Still, to understand the underlying causes of
our observation in depth, further research would be necessary.

7 EXPERIMENT 1: EVALUATING

BUILD-FAILURE PREDICTION

RQ4 & RQ5: How effective is SmartBuildSkip predicting

first failures and all failures? In our second empirical study,
we discovered features that predict first failures (§6). Next, we use
them in SmartBuildSkip to evaluate it.

We evaluate SmartBuildSkip in two experiments that comple-
ment each other. First, we evaluate its effectiveness for predicting
build failures (§7), and then we evaluate the cost reduction that its
predictions provide in practice (§8).

Our first experiment (§7) allows us to compare the effective-
ness of SmartBuildSkip with that of existing build-prediction
techniques (e.g., [23, 43, 73]) in the scenario in which they were
originally proposed and evaluated: a scenario in which the infor-
mation about previous builds is always known — ignoring that it
would not be available if a previous build was skipped. Automatic
build prediction in such scenario can be useful to give developers
more confidence about their code changes, e.g., [23] — even if they
did not skip builds.

Our second experiment (§8) allows us to evaluate how much
cost SmartBuildSkip would save in CI in our target scenario — a
practical scenario in which the outcome of builds that were skipped
is unknown.

Research Method. We evaluate the prediction effectiveness of
SmartBuildSkip in comparison to the state-of-the-art build-prediction

technique: HW17 [23]. To better understand the benefit of Smart-
BuildSkip’s two-stage design (see §3), we separately evaluate pre-
dictions for first failures and all failures. We evaluate both tech-
niques over our dataset described in §4, and we measure their pre-
diction effectiveness using precision, recall, and F1 score. We tested
our results for statistical significance with a two-tailed Wilcoxon
test, and decided statistical significance for p < 0.05.

State-of-the-art Build-prediction Technique: HW17. To provide a
point of reference for this evaluation, we replicated the state-of-the-
art build prediction technique: HW17 [23]. We use the acronym
HW17 to refer to it — the first letter of the authors’ last names and
its publication date — since the authors did not assign it a specific
name. To the extent of our knowledge, HW17 is the existing build
prediction technique that provided the highest precision and recall.

HW17 predicts build outcomes with a random-forest machine-
learning algorithm, informed by a collection of 16 features about
the current build, 4 features about the previous build, and 8 features
generated from analyzing build logs. In contrast, SmartBuildSkip
requires only 4 current-build features, no previous-build features,
and 3 project features (§6). Only a few features are considered
by both HW17 and SmartBuildSkip: SC, FC, and TC (see their
descriptions in §6). Hassan and Wang found these features to be
correlated with all failures [23], and we found them to be correlated
with first failures (see §6).

Our proposed approach SmartBuildSkip provides two main
strengths over HW17 for saving cost in continuous integration:
(1) SmartBuildSkip runs predictions only for first failures, and
determines that all subsequent builds fail until a pass is observed.
HW17 does not make such distinction, and runs predictions for
all builds. We posit that SmartBuildSkip’s strategy will be more
effective at predicting both first and subsequent failures (which we
evaluate in this experiment). (2) SmartBuildSkip predicts based
only on features describing the current build and the project, but
it does not rely on features about the previous build. HW17, like
the other existing build-prediction approaches, does rely on the
outcome of the previous build, among other features. We posit
that such choice would make HW17 much less effective in real-
world usage: whenever a previous build is skipped, its outcome
will be unknown, which would negatively impact HW17 but not
SmartBuildSkip (which we study in §8).

Predicting first failures vs. all failures. We evaluate the prediction of
first failures and all failures over two different datasets. For predict-
ing first failures, we removed subsequent failures from our dataset
and evaluated our studied techniques over it. For predicting all

failures, we evaluated our studied techniques over the dataset orig-
inally used to evaluate HW17 [23], which contains both first and
subsequent failures, i.e., all failures. The paper’s authors generously
shared this dataset with us and we applied to it the same curation
that we described in §4. Like our dataset, HW17’s is also obtained
from TravisTorrent [4] — HW17’s dataset is in fact a subset of ours.
HW17’s dataset includes only Java projects that use the Ant, Maven,
or Gradle build systems. In total, their dataset contains 37 projects.

This decision strengthens our experiment in two ways. (1) Per-
forming our evaluation for all failures over HW17’s dataset allows
us to make a fair comparison between HW17 and SmartBuildSkip.
HW17 relies on some pre-computed features about the preceding

18

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 03,2023 at 07:05:46 UTC from IEEE Xplore.  Restrictions apply. 



A Cost-efficient Approach to Building in Continuous Integration ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Pr
ec
isi
on

0%

10%

20%

30%

40%

50%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Re
ca
ll

0%

10%

20%

30%

40%

50%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

F1
sc
or
e

0%

10%

20%

30%

40%

50%

Figure 6: Performance comparison on predicting first failures
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Figure 7: Performance comparison on predicting all failures

build (e.g., cluster_id) that are only available in their dataset — not
in TravisTorrent. We decided to use HW17’s dataset so that it could
benefit from this pre-computed information. (2) We could still eval-
uate the prediction of first failures over our larger dataset, since
HW17 does not benefit from its pre-computed features when there
are only first failures, i.e., the preceding build to a failing build is
always a passing build — all of which get the same cluster_id value.

Cross-validation. We perform 8-fold cross validation, also to study
the same conditions in which HW17 was evaluated. Thus, we ran-
domly divided our dataset (§4) into 8 subsets of builds, i.e., folds,
iteratively using one of them as our test set and the remaining ones
as our training set, until we have used every fold as test set.

We evaluated theWithin variations of our studied techniques
applying cross-validation individually for each software project —
randomly dividing the set of builds of the same software project
into subsets. We evaluated the Cross variations of our studied
techniques applying cross-validation across software projects —
randomly dividing the set of projects in our dataset into subsets
of projects, and using all the builds within a project for testing or
training, accordingly. In both cases, we report the results of our
evaluation metrics per software project.

Independent Variable: Technique. We evaluate four different ap-
proaches: our proposed approaches andHW17 [23], in theirWithin
and Cross variants.
SmartBuildSkip-Within: Our proposed approach described

in §3, trained in the same software project, using the predict-
ing build features that we discovered in §6.

SmartBuildSkip-Cross: Our proposed approach described in
§3, trained in other software projects, using the predicting
build features and project features that we discovered in §6.

HW17-Within: The state-of-the-art build predictor, trained in
the same software project.

HW17-Cross: The state-of-the-art build predictor, trained in dif-
ferent software projects.

Dependent Variables. We used three metrics to evaluate our studied
techniques: precision, recall, and F1 score. We calculated the value
of these metrics for each studied software project, first for the set
of first failures, and then for the set of all failures.

We measured precision as the number of correctly predicted
build failures divided by the number of builds that the technique
predicted as build failures. We measured recall as the number of
correctly predicted build failures divided by the number of actual
build failures. We measured F1 score as the harmonic mean of
precision and recall.

Results.We plot the results of this experiment in Figure 6 for the
prediction of first failures, and in Figure 7 for the prediction of all
failures. The boxes in these box plots for each dependent variable
represent its distribution of values for all the studied projects. We
discuss our observed differences in results in terms of absolute
percentage point differences over the median value of each metric
across projects.

Predicting first failures. SmartBuildSkip improved HW17’s median
precision by 3% for itsWithin approach and by 9% for its Cross
approach. SmartBuildSkip also improved HW17’s median recall
by 4% for itsWithin approach and by 7% for its Cross approach.
These differences were statistically significant (p < 0.05). We posit
that SmartBuildSkip-Cross provided an even higher improve-
ment because its training set was much larger — encompassing
multiple projects — and because build features likely vary little
from project to project. These findings validate our hypothesis in
§2 that separately predicting first failures is more effective than
training a predictor based on features from all failures.

Predicting all failures. SmartBuildSkip improved HW17’s median
precision by 16% for its Within approach and was 9% worse for
its Cross approach. It also improved HW17’s median recall by 28%
for its Within approach and by 68% for its Cross approach. These
differences were statistically significant (p < 0.05). We posit that
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SmartBuildSkip’s precision and recall are now much higher than
HW17’s because it is much better at predicting subsequent failures.
We also observed that both techniques generally improved both
their precision and recall. We believe that this is due to the increase
in the number of failing builds in the dataset — after adding subse-

quent failures), allowing all techniques to learn them better. This
is particularly acute for SmartBuildSkip’s Cross variants, which
became much more inclined to predict build failures after being
trained with much more data (across projects), which dramatically
increased its recall, but reduced its precision. These findings also
validate our hypothesis in §2 that choosing to always build after a
failure is a highly successful strategy to predict subsequent failures.

8 EXPERIMENT 2: EVALUATING CI COST

REDUCTION

RQ6 & RQ7: How many resources, i.e. builds, will our ap-

proaches save?What is the value trade-off for such resource

savings? After finding that SmartBuildSkip improves the preci-
sion and recall of the state-of-the-art build predictor, we measure
the cost reduction that it would provide in practice.

Research Method.We now simulate the more realistic scenario
in which the builds that are skipped are not available for training.
We use the same setting as in §7, with one change. Now, when a
predictor predicts the upcoming build as a pass, we skip the build,
and accumulate the value of the build-level features for the next
coming build. We only update the information connected to the last
build when the predictor actually decides to build. In this context,
we measure four metrics for each evaluated technique: how many
builds it saves, how many failing builds are observed immediately
(and how many with a delay), the delay length of delayed failing
builds, and a new metric to measure the balance between failing
build observation delay and build execution saving.

Independent Variable: Technique. We evaluate the same four predic-
tors as in Experiment 1, in addition to a new collection of techniques
that we call rule-of-thumb techniques. In the spirit of cost-saving,
we propose this additional collection of techniques because of their
low adoption cost. These rule-of-thumb techniques are based on
the individual build features that we observed in §6. They sim-
ply decide to skip builds when the given feature value is below
a certain threshold. We propose these techniques as a potentially
“good-enough” alternative for software teams that do not have the
resources to implement and adopt SmartBuildSkip, or for them to
use in the time period while they are implementing it. Finally, we
also include a “Perfect” technique that would skip all passing builds
and run all failing builds — as a reference for how many builds
could be desirably skipped.

Independent Variable: Prediction sensitivity. Our simple techniques
need a threshold to be applied, i.e., they are defined as “predict
build failures when the feature value is over X”. In a similar manner,
SmartBuildSkip can be also configured for different thresholds
of prediction sensitivity. Thus, we also evaluate these techniques
for multiple thresholds of sensitivity. Only when the possibility
predicted by the classifier for the coming build to become a failure is
smaller than the threshold, we will predict the build as a pass, which
means the smaller the threshold is, the easier we are going to predict

builds as failing. Finally, these varied thresholds and prediction
sensitivities will allow us to learn different trade-offs that could be
achieved in terms of saving cost in CI — skipping builds — without
losing too much value — without delaying too many build failures.
We evaluated 50 different thresholds (values 1–50), which meant:
absolute value for the “rule-of-thumb” techniques, and predicted
likelihood (in percentage) of the build to fail for SmartBuildSkip.

Studied dataset. Since this experiment is focused on predicting
all builds, we also use the dataset in which HW17 was originally
evaluated (§7).

Dependent Variables.We measured four metrics in this evaluation:
Recall, Failing-build Delay, Saved Builds, and Saving Efficiency.
Recall is the proportion of failing builds that are correctly pre-
dicted and executed, among all failing builds. For each failing build
that was incorrectly predicted and skipped, we also measured its
Failing-build Delay, as the number of builds that were skipped until
the predictor decided to run a build again — and then the failure
would be observed. We measured Saved Builds as the proportion
of builds that are skipped among all builds. Finally, we measured
Saving Efficiency as the harmonic mean of saved-builds and recall,
to understand their balance.

Results. We plot the results for our Experiment 2 in Figure 8.
This figure shows the median value for each metric across studied
projects. For Failing-build Delay, it’s the median across projects
of their median Failing-build Delay. The Y axis is the metric for
evaluation and each box contains every project’s result. The X axis
has different meanings for different techniques: the threshold for
rule-of-thumb techniques (e.g., threshold 5 for #src_files means that
<5 files were changed in that build), or the prediction sensitivity (in
percentage) for the predictors.

We make a few observations from our results. First, Smart-
BuildSkip-Within achieves the peak saving efficiency among all
techniques for its 2% sensitivity — saving 61% of all builds, execut-
ing 73% of the failing builds immediately, and the remaining ones
with a median 2-build delay. If a more conservative approach is
sought, SmartBuildSkip-Within’s 0% sensitivity would execute
80% of the failing builds (and the remaining ones with a 1-build
delay), while still saving 45% of all builds.

HW17 achieved the poorest saving efficiency. As we anticipated
in §2, HW17 predicted most builds to pass because it relied too
much on the status of the last build. It saved a large amount of
builds, but it also executed very few failing builds as a result.

Finally, our rule-of-thumb techniques provided acceptable re-
sults. Thus, a software team looking for a simple mechanism to save
effort by skipping builds in CI could simply skip those builds that,
for example, changed more than 30 lines — which is the highest
saving efficiency for #src-lines. In our experiments, this threshold
saved around 57% builds, executing 60% failing builds (and the re-
maining ones with an 8-build delay). While this trade-off may not
be the most ideal (certainly SmartBuildSkip provides much better
trade-offs), it has the advantage that it can be adopted by simply
informing developers to follow that rule.

Finally, if more conservative or more risky approaches are pre-
ferred, Figure 8 shows a wide variety of trade-offs that could be
achieved by different techniques and configurations.
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Figure 8: Cost saved and value kept by evaluated techniques

9 DISCUSSION

Diverse Cost-saving Needs. Different developers will have dif-
ferent preferences in the trade-off between observing failing builds
early and saving build effort. Thus, we propose SmartBuildSkip
as a customizable solution, with an adjustable prediction sensi-
tivity. Some developers may value observing failing builds early
much more than saving cost (but still want to save some cost), e.g.,
developers at large companies that have been using CI for some
time and are exploring ways to reduce its cost (like Facebook [37],
Microsoft [24], or Google [12]). These developers could configure
SmartBuildSkip in its most conservative sensitivity (0) and save
the cost of 30% of their builds while only introducing a 1-build delay
in 15% of their build failures.

In contrast, other developers may be looking for a way to reduce
CI’s high-cost barrier [70] to adopt it, even if it means observ-
ing build failures less quickly. These developers could configure
SmartBuildSkip with a more liberal sensitivity (2) and save the
cost of 61% of their builds and still observe 73% failing builds with
no delay (and the remaining 27% with a 2-build delay). In this
scenario, SmartBuildSkip dramatically lowers the cost of CI for
non-adopters, letting them still get a strong value from it — partic-
ularly considering that non-adopters currently do not benefit from
CI at all. Furthermore, as developers’ budgets increase, they could
also adapt the sensitivity of SmartBuildSkip over time to build
more and observe failures more quickly.

The Impact of Delayed Failing Builds. Our approach reduces
the cost of CI, but it also reduces its value — it delays the observation
of some build failures. Some existing techniques target developers
who cannot afford a single delayed failing build — by skipping
only tests [59] or commits [2] that are guaranteed to pass, i.e., tests
for other modules and non-code changes. In exchange for such
guarantee, this strategy is limited in how much cost it can save —
the number of guaranteed-pass tests and commits.

Our proposed technique targets developers for whom some de-
lay in failure observation is acceptable — as do existing techniques
based on test selection. Such techniques, which introduce failure
observation delays, are valued and adopted by many large soft-
ware companies, e.g., Google [11], Microsoft [24], or Facebook [37].
We argue that, for many developers, the cost savings provided by
SmartBuildSkip overcome the introduced delay in failure obser-
vation — particularly for SmartBuildSkip’s most conservative sen-
sitivities, which produce a delay of one or two builds. For context,
Herzig et al.’s approach [24] (deployed at Microsoft) introduced a
delay of 1–3 builds. Ultimately, though, we believe that different
developers would prefer different cost-saving trade-offs, which is
why we made SmartBuildSkip customizable.

Other Purposes of CI. The main reason for developers to use CI
is to catch bugs earlier [25], but they also use it to: have a common

build environment, make integrations easier, enforce a specific work-
flow, simplify testing across multiple platforms, be less worried about
breaking builds, deploy more often, and have faster iterations, [25, 26].
Most (the first four) of these purposes are achieved as soon as CI is
adopted, so we do not expect them to be impacted by introducing
a cost-saving technique like SmartBuildSkip. However, the last
three purposes (and others like safety-checking pull requests) may
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be impacted, since they benefit from observing build passes. This
applies to both our and existing techniques that skip tests or builds.

Still, after adopting a cost-saving technique, developers remain
in control of their build frequency. They can always build more fre-
quently by making SmartBuildSkip’s prediction sensitivity more
conservative, or by simply triggering additional builds on top of
the ones that SmartBuildSkip triggers.

Furthermore, SmartBuildSkip provides an additional benefit
over existing test-selection-based techniques for purposes that rely
on build observations. Test-selection techniques may give a false
sense of confidence [45] when a build that should have failed instead
passes because some of its failing tests were skipped.

When SmartBuildSkip predicts a build that should have failed
as passing, it skips it (it does not show it as passing), which provides
more transparency about the unknown status of the build — until
it eventually fails in a later build.

10 THREATS TO VALIDITY

Construct Validity. We use metrics as proxies to represent the
value — early observation of build failures — and cost — build
execution — in CI. However, these are metrics that developers
have reported as describing the value and cost of CI, e.g., [10, 15,
26, 43], and are metrics that other existing approaches for saving
cost in CI have used, e.g., [2, 37]. Herzig et al. [24] assign specific
dollar amounts to each test case that is saved and each failure
observation that is delayed. We avoid using their numbers, since
they were calculated at Microsoft and will probably be different at
other companies.

Internal Validity. To guard internal validity, we carefully tested
our evaluation tools on subsets of our dataset while developing
them. Our analysis could also be influenced by incorrect informa-
tion in our analyzed dataset. For this, we selected a popular dataset
that has been analyzed in other studies and we filtered outliers and
toy projects out of it. Our results may also be affected by flaky tests
causing spurious failing builds. However, CI systems are expected
to function even in the presence of flaky tests, since most compa-
nies do not consider it economically viable to remove them, e.g.,
[37, 40].

Another threat could be the risk of over-fitting in our empirical
study 2 (§6), since we performed it over our complete data set
— since we aimed to increase the generalizability of our observed
correlated features. To address the over-fitting risk, we repeated our
study on the chronologically earlier half of data for build features
and a half of projects for project features through stratified random
sampling [9] on number of builds. The features selected with our
original criteria remained the same (correlation coefficients — SC:
0.68, FC: 0.91, TC: 0.75, NC: 0.73, TD: 0.16, PS: 0.22, PA: 0.18).

Also, our usage of cross-validation may result in placing future
builds in the training sample. An alternative approach would have
been to use chronological training and testing, e.g., [5, 56, 63]. How-
ever, our goal was to compare SmartBuildSkip with HW17 in the
scenario in which it was originally proposed and evaluated, i.e.,
using cross-validation. Nevertheless, we believe that SmartBuild-
Skip would provide similar precision and recall in a chronological
experiment, since it uses build features that likely do not vary much
over time, i.e.,we believe that SC, FC, TC, and NC do not necessarily

vary significantly as projects age. Furthermore, SmartBuildSkip’s
cross-project variant is not affected by this threat, since it was
trained in different projects than it was tested.

Finally, we also increase our internal validity by validating the
hypothesis that influence our proposed technique via studies 1 (§5)
and 2 (§6).

External Validity. To increase external validity, we selected the
popular dataset Travis CI, which has been analyzed by many other
researchworks. The projects we chosewere all Java or Ruby projects,
because there are no projects with other programming languages
in the data set. Although these two programming languages are
popular, different CI habits in other languages may provide slightly
different results to the ones in this study. Finally, our cost-saving
technique may not be suitable for software projects that cannot
afford a single delay in observing failing builds. We target projects
that can afford some delay in exchange for the cost savings, as do
other techniques that skip builds, e.g., [2] or tests, e.g., [37].

11 RELATEDWORK

Empirical Studies of CI and its Cost. Multiple researchers fo-
cused on understanding the practice of CI, studying both practition-
ers e.g., [26] and software repositories [68]. Vasilescu et al. studied
CI as a tool in social coding [67], and later studied its impact on soft-
ware quality and productivity [68]. Zhao et al. studied the impact of
CI in other development practices, like bug-fixing and testing [79].
Stahl et al. [62] and Hilton et al. [26] studied the benefits and costs
of using CI, and the trade-offs between them [25]. Lepannen et al.

similarly studied the costs and benefits of continuous delivery [34].
Felidré et al. [13] studied the adherence of projects to the original
CI rules [15]. Other recent studies focused on the difficulties [45]
and pain points [70] of CI.

The high cost of running builds is highlighted by many empirical
studies as an important problem in CI [24–26, 45, 70] — which
reaches millions of dollars in large companies, e.g., at Google [26]
and Microsoft [24].

Approaches to Reduce the Cost of CI.A popular effort to reduce
the cost of CI focuses on understanding what causes long build
durations e.g., [19, 66]. Thus, most of the approaches that reduce
the cost of CI aim at making builds faster by running fewer test
cases on each build. Some approaches use historical test failures
to decide which tests to run [12, 24] Others run tests with a small
distance with the code changes [39] or skip those testing unchanged
modules [59]. Recently, Machalica et al. predicted test case failures
using a machine learning classifier [37]. These techniques are based
on the broader field of regression test selection (RTS) e.g., [20, 49,
50, 74, 75, 78, 80]. While these techniques focus on making every
build cheaper, our work addresses the cost of CI differently: by
reducing the total number of builds that get executed. A related
recent technique saves cost in CI by not building when builds
only include non-code changes [1, 2]. Our technique predicts build
outcomes for any kind of changes (code and non-code). Thus, our
work complements existing techniques to reduce cost in CI, and
could potentially be applied in addition to them.

A related effort for improving CI aims at speeding up its feed-
back by prioritizing its tasks. The most common approach in this
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direction is to apply test case prioritization (TCP) techniques e.g.,
[11, 12, 36, 38, 42, 51] so that builds fail faster. Another similar
approach achieves faster feedback by prioritizing builds instead
of tests [35]. In contrast, our work focuses on saving cost in CI
by skipping tasks instead of prioritizing them. Prioritization-based
techniques increase feedback speed but do not focus on saving cost,
i.e., all builds still get executed, and all passing tests get executed if
no test failure is observed.

Finally, other complementary efforts to reduce build duration
have targeted speeding up the compilation process e.g., [7] or the
initiation of testing machines e.g., [17].

Characterizing Failing Builds.Multiple studies investigated the
reasons why builds fail. Some studies [41, 69] found that the most
common build failures were compilation [77], unit test, static anal-
ysis [76], and server errors. Paixão et al. [44] studied the interplay
between non-functioal requirements and failing builds. Other stud-
ies found factors that contribute to build failures: architectural
dependencies [6, 52] and other more specific factors, such as the
stakeholder role, the type of work item and build [32], or the pro-
gramming language [3]. Other less obvious factors that could cause
build failures are build environment changes or flaky tests [47].
Rausch et al. [47] also found that build failures tend to occur con-
secutively, which Gallaba et al. [16] describe as “persistent build
breaks”. These observations inform our hypothesis that subsequent
build failures would be numerous and easy to anticipate.

Other studies found change characteristics that correlate with
failing builds, such as: number of commits, code churn [27, 47],
number of changed files, build tool [27], and statistics on the last
build and the history of the committer [43]. In our study, we separate
failing builds into first failures and subsequent failures. We found
that first failures are predicted by some of the factors that predict all
builds (line, file, and test churn, and number of commits), but also
by factors that were not found to correlate with all builds (project
size, age, and test density).

Finally, other studies investigated the characteristics of build
failures outside the CI context [22, 46, 65]

Predicting Failing Builds. Some works aimed at predicting build
outcomes in industrial settings where continuous integration was
not yet adopted. These techniques mostly approached this problem
using machine learning classifiers, e.g., measuring social and tech-
nical factors and using decision trees [21]; applying social network
analysis and measuring socio-technical factors [33, 72]; and using
code metrics on incremental decision trees [14].

In the continuous integration context, Ni and Li [43] predict
build outcomes using cascade classifiers measuring statistics about
the last build and the committer of the current build. Xie and Li
[73] use a semi-supervised method over change metrics and the
last build’s outcome. Hassan and Wang [23] use a predictor over
the last build’s status and type. Since all these predictors rely on
the outcome of the last build to be known, their prediction power
may be limited in a cost-saving context, where the last build means
the last build that was executed. In contrast to these predictors,
SmartBuildSkip is not affected by how stale the last build status
is, since it does not rely on it for its prediction.

12 CONCLUSIONS AND FUTUREWORK

In this article, we proposed and evaluated SmartBuildSkip, a novel
framework for saving cost in CI by skipping builds that it predicts
will pass. Our design of SmartBuildSkip is based on two main
hypothesis: that build passes are numerous and that many fail-
ing builds happen consecutively. We studied these hypotheses and
found evidence to support them. Thus, SmartBuildSkip works in
two phases: first it runs a machine learning predictor to decide if a
build will pass — and skips it — or will fail — and executes it. When-
ever it observes a failing build, it determines that all subsequent
builds will fail and keeps building until it observes a pass again —
and starts predicting again.

With this strategy, SmartBuildSkip improved the precision
and recall of the state-of-the-art build predictor (HW17) and cost
savings with various trade-offs, since we made it customizable to
address the needs of diverse populations of developers. We high-
light two specific configurations that we posit will be popular: the
most conservative one, which saves 30% builds and only delays
the observation of 15% failing builds by 1 build; and a more bal-
anced one that saves 61% of all builds and delays 27% failing builds
by 2 builds. Nevertheless, SmartBuildSkip provides many other
trade-offs that could be desirable in different environments. Smart-
BuildSkip provides a novel strategy that complements existing
techniques to cost saving in CI that focus on skipping test cases or
builds with non-code changes.

In the future, we will work on extending SmartBuildSkip’s
algorithm with static analysis techniques to predict build failures
based on characteristics of the contents of their code changes. We
will also explore adding prediction features based on the historical
properties of the changed modules between builds, such as their
code-change history [53–55, 57, 58]. Currently, SmartBuildSkip
benefits from statistical properties of builds. This future approach
would focus on taking advantage of their structural properties.

13 REPLICATION

We include a replication package for our paper [30].
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