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Abstract—Continuous integration (CI) is a widely used practice
in modern software engineering. Unfortunately, it is also an
expensive practice — Google and Mozilla estimate their CI
systems in millions of dollars. There are a number of techniques
and tools designed to or having the potential to save the cost of
CI or expand its benefit - reducing time to feedback. However,
their benefits in some dimensions may also result in drawbacks
in others. They may also be beneficial in other scenarios where
they are not designed to help. Therefore, we built CIBench, a
dataset and collection of techniques for build and test selection
and prioritization in Continuous Integration. CIBench is based on
a popular existing dataset for CI — TravisTorrent [2] and extends
it in multiple ways including mining additional Travis logs,
Github commits, and building dependency graphs for studied
projects. This dataset allows us to replicate and evaluate existing
techniques to improve CI under the same settings, to better
understand the impact of applying different strategies in a more
comprehensive way.

Index Terms—continuous integration, software maintenance,
empirical software engineering

I. INTRODUCTION

Continuous Integration (CI) is a popular software devel-

opment practice by which developers integrate code into a

shared repository several times a day [4]. However, CI gains

adoption in practice, along with difficulties and pain points.

As software companies adopt CI, they execute many builds

for many of projects in a very frequent way. As workload

increases, two main problems appear: (1) the time to receive

feedback from the build process increases [7], as software

builds often outnumber the available computational resources

— having to wait in build queues, and (2) the computational

cost of running builds also becomes very high [5].

Multiple techniques have been proposed to improve CI.

Most of them have the goal of reducing either its time-

to-feedback or its computational cost. Time-to-feedback-

reduction techniques aim to observe failures earlier — by pri-

oritizing failing executions over passing ones. Computational-

cost-reduction techniques aim to observe failures only — by

selectively running failing executions only, saving the cost of

executing passing ones. These techniques may operate in two

different levels of granularity, by prioritizing or selecting: test

executions e.g., [3], [8], or build executions e.g., [7], [1].

To the extent of our knowledge, the existing techniques

to improve CI have been evaluated under different settings,

making it hard to compare them. Previous studies used differ-

ent software projects, different metrics, and rarely compared

one technique to another. However, we expect that different

choices of goal, granularity, and technique design will bring

different trade-offs. Empirically understanding these trade-offs

will have valuable practical implications for the design of

future techniques and for practitioners adopting them.

As a result, we built CIBench1, a dataset and collection of

time-to-feedback-reduction and computational-cost-reduction

techniques in Continuous Integration. CIBench selects rep-

resentative projects from TravisTorrent [2] and extends it

in multiple ways, including mining additional Travis logs,

Github commits, and building dependency graphs for selected

projects. Based on our dataset, we replicated and evaluated

all the existing 10 CI-improving techniques from the research

literature, representing the two goals (time-to-feedback and

computational-cost reduction) and the two levels of granularity

(build-level and test-level) for which such techniques have

been proposed. Finally, we measured the effectiveness of all

techniques with 10 metrics in 3 dimensions.

CIBench is the first dataset for the comprehensive evaluation

of CI-improving techniques, including a replication of 14

variants of 10 CI improving techniques and how they perform

with 10 metrics. The observations and findings from the

evaluation can be accessed by existing work [6].

II. THE CIBENCH DATASET

In this section, we give an overview of our dataset, in-

cluding technical briefings for better understanding of how

we extended the original dataset, how we replicated existing

techniques and how we evaluated these techniques.

A. Data Pre-processing in TravisTorrent

We firstly performed data preprocessing in Travis Torrent

dataset [2], which includes 1,359 projects (402 Java projects

and 898 Ruby projects) with data for 2,640,825 build in-

stances. We removed “toy projects” from the data set by

1https://doi.org/10.5281/zenodo.4372963
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focusing on those that are more than one year old, and that

have at least 200 builds and at least 1000 lines of source

code, which is a criteria applied in multiple other works. To

be able to evaluate test granularity techniques, we also filter

out those projects whose build logs do not contain any test

information. We focused on builds with passing or failing

result, rather than error or canceled — since they can be

exceptions or may happen during the initialization and get

aborted immediately before the real build starts. Besides, in

Travis a single push or pull request can trigger a build with

multiple jobs, and each job corresponds to a configuration of

the building step. We did a preliminary investigation of these

builds and found that these jobs with the same build identifier

normally share the same build result and build duration. Thus,

as many existing papers have done, we considered these jobs

as a single build. After this filtering process, we obtained

82,427 builds from 100 projects (13,464 failing builds). The

result after data pre-processing can be found under folder

“TravisTorrent” and the project list can be found under folder

“Extended TravisTorrent/projects”.

B. Data Extension in TravisTorrent

We extended the information in TravisTorrent of these 100

projects in multiple ways. First of all, we needed to capture

the historical failure ratio and duration for each individual

test. To obtain these information, we built scripts to download

the raw build logs from Travis and parse them to extract

all of the information about test executions, such as test

name, duration and outcome. These information can be found

in folder “Extended TravisTorrent/test info logs” with scripts

for downloading and parsing build logs. Some techniques

require additional information that TravisTorrent does not

provide for builds, such as the content of commit messages,

changed source lines and changed file names. For that, we also

mined additional information about commits in the projects’

code repositories through Github. The information is cov-

ered under folder “Extended TravisTorrent/git info”. Then,

we matched each test with its corresponding test file in the

project. Finally, to be able to run other techniques, we built

a dependency graph for the source code of each project

using a static code analysis tool (Scitool Understand2) to

determine the paths between the source files and test files.

The dependency information of projects is stored in the folder

“Extended TravisTorrent/dependency”.

C. Technique Replications and Simulations

We replicated 10 techniques and simulated them in a real-

world scenario, including three test prioritization techniques,

one build prioritization technique, three test selection tech-

niques, and three build selection techniques. The detailed

information about replicated techniques can found in existing

paper [6]. For those techniques trained within projects, we

used an 11-fold, chronological variant of cross-validation. For

each project, we split its chronological timeline into 11 folds.

2Understand Static Code Analysis Tool: https://scitools.com/

We used the first chronological fold only for testing, and we

iteratively test the other 10 folds. For each testing fold, we

trained on all the folds that precede it chronologically. Besides,

for selection-based techniques, when a build or test is skipped,

the technique will not know its outcome. Additionally, when

builds are skipped, we accumulated their code changes into

the subsequent build. The folder “Replication” includes the

replication and simulation of all 10 existing techniques men-

tioned in the paper [6] based on the extended data set. We

also included the simulation result of cross-project and within-

project for those techniques that require to be trained.

D. Technique Evaluations

After we replicated and simulated all the techniques under

the same settings, we compared them based on ten metrics

from three dimensions: (D1) computational-cost reduction,

(D2) missed failure observation, and (D3) early feedback.

To compare the techniques’ cost-saving ability (D1), we

measured saved numbers or duration of builds or tests. We

also included the proportion of skipped failing tests or builds

to better understand the undesirable side effect of cost-

saving techniques skipping some of the failing executions

(D2). Finally, we measured positions shifted for treated or

all failing builds and build-queue-length saved to understand

how selection techniques impact the failure observation (D3).

We additionally included positions shifted for observed failing

tests to see how prioritization techniques advance failure

observations. The comparison result of the techniques based

on 10 different metrics can be found under folder “Evalu-

ation/metrics”, with scripts analyzing the simulation results.

The folder “data set/Evaluation/result” includes the figures of

the evaluation.
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