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ABSTRACT

Continuous integration (CI) is a widely used practice in modern
software engineering. Unfortunately, it is also an expensive practice
— Google and Mozilla estimate their CI systems in millions of dol-
lars. To reduce CI computation cost, I propose the strategy of build
selection to selectively execute those builds whose outcomes are
failing and skip those passing builds for cost-saving. In my research,
I firstly designed SmartBuildSkip as my first build selection ap-
proach that can skip unfruitful builds in CI automatically. Next, I
evaluated SmartBuildSkip with all CI-improving approaches for
understanding the strength and weakness of existing approaches
to recommend future technique design. Then I proposed Precise-
BuildSkip as a build selection approach to maximize the safety of
skipping builds in CI. I also combined existing approaches both
within and across granularity to be applied as a new build selec-
tion approach — HybridBuildSkip to save builds in a hybrid way.
Finally, I plan to propose a human study to understand how to
increase developers’ trust on build selection approaches.
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1 INTRODUCTION

Continuous integration (CI) is a popular practice in modern soft-
ware engineering that encourages developers to build and test their
software in frequent intervals [10]. While CI is widely recognized
as a valuable practice, it also incurs a very high cost — mostly
for the computational resources required to frequently run builds
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[16–18, 33, 40]. Overall, adopting CI can be very expensive. Google
estimates the cost of running its CI system in millions of dollars
[18], and Mozilla estimates theirs as $201,000 per month [23]. For
smaller-budget companies that have not yet adopted CI, this high
cost can pose a strong barrier.

There are many existing research approaches to save cost in
CI, including techniques to make CI builds faster by accelerating
preparation phase [6, 12] or running fewer tests [27]. In contrast, I
propose to save CI cost by selectively executing a subset of builds
among all builds — build selection. Practitioners are normally care-
ful when triggering builds — existing work [4] finds that 82% of
builds are passing. These passing builds are not able to provide
actionable feedback but takes a long time for the result — develop-
ers have to wait more than 30 minutes to receive the test results
[25]. Thus, detecting and selecting only failing builds to execute
can provide much cost-saving and reduce time-to-feedback as well.

To achieve this goal, I proposed a collection of novel build selec-
tion strategies that focus on skipping builds that are predicted to
pass to reduce the cost of CI. My goal is to execute fewer builds,
while running asmany failing builds as early as possible. The
rationale behind my strategy is: skip builds that are predicted to
pass and execute builds that are likely to fail. I posit that the value
of CI lies in the observation of failures and its cost lies in the build
executions because failing builds can provide actionable feedback.

However, build selection to save CI cost has many challenges.
First of all, existing build outcome predictors cannot be used for
build selection because their predictions rely on the result of previ-
ous build which may not be always available because the previous
build can be skipped. To address this challenge, I proposed my first
build selection approach, SmartBuildSkip. SmartBuildSkip fo-
cuses on predicting first failures without relying on any information
from the last build and detect subsequent failures by continuously
executing builds after failing builds until a passing build is observed
instead of making predictions. This two-phase process ensures that
SmartBuildSkip can save CI cost effectively.

Second, there are highly related existing fields to build selection
such as test selection and build prioritization. Comparing all these
approaches can be beneficial by understanding their own strengths
and learning from each other. Despite that, these approaches are
evaluated under different settings, making it a challenge to com-
pare them. Thus, we proposed a first evaluation work to compare
these CI-improving techniques in the same CI environment. This
work aims to understand the strengths of various CI-improving
techniques and can recommend future build selection design.

Another challenge for build selection lies in how to address
mispredictions on failing builds. Failing builds are not desirable
to skip and mistakenly predicting these failing builds to pass can
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result in delaying failure observations, i.e., build failures arewrongly
skipped and thus cannot be observed on time. Many practitioners
may prefer a build selection technique that maximizes its safety.
Thus, I proposed PreciseBuildSkip that aims to maximize the
observed build failures while saving CI cost to address this problem.

Besides, normally safe build selections that capture all failing
builds are not able to save much cost. Thus, it is a challenge for build
selection approaches to enlarge cost-saving without sacrificing the
safety. To address this problem, I proposed HybridBuildSkip that
combines existing selection approaches both within and across
granularities. HybridBuildSkip combines selection approaches to
make better predictions within their granularity and then combines
them across granularity to earn more cost-saving by skipping both
full and partial builds.

The final challenge for build selection approaches focuses on
how to build developers’ trust on these approaches. Practitioners
may require more information about build selection decisions to
adopt these techniques. Therefore, I plan to propose the first human
study on understanding the barriers of adopting build selection ap-
proaches and how to increase developers’ trust on these automated
build selection recommendations.

To summarize, my research includes a collection of build se-
lection approaches: SmartBuildSkip as my first build selection
technique, PreciseBuildSkip that maximizes the safety and Hy-
bridBuildSkip that increases the cost-saving by combining existing
approaches. My research also includes a comprehensive evaluation
of CI-improving approaches and a human study about developers’
opinions on build selection approaches. My work [20–22] have
been published in ICSE’20 and ICSE’21.

2 MOTIVATION AND RELATEDWORK

Characterizing Builds. There are many existing work aiming to
characterize builds. Abdalkareem et al. [2] targeted characterizing
CI-Skip builds which are likely to be skipped by developers. They
proposed a human study to understand reasons why developers
decide to skip builds and designed a rule-based technique based on
their findings. Other works aimed to characterize builds to predict
build outcomes. Hassan et al. found that features related to the pre-
vious build are most effective when predicting build outcomes [14].
Ni et al. [31] and Chen et al. [7] also found that historical features
are the most useful features in predicting the build outcome.

Other studies investigated the reasons for build failures. Some
studies [39] sort common build failures into compilation [42], unit
test, static analysis [41], and server errors. Paixão et al. [32] studied
the interplay between non-functional requirements and failing
builds. Other studies found factors that contribute to build failures:
architectural dependencies [36] and other more specific factors,
such as the stakeholder role, the type of work item and build [24],
or the programming language [4]. Other less obvious factors that
could cause build failures are build environment changes or flaky
tests [34]. Some work [34][20] also found that build failures tend to
occur consecutively, which Gallaba et al. [11] describe as “persistent
build breaks”. Barrak et al. found that features related to code smell
can be effective for predicting build outcomes [3]. Other studies
found change characteristics that correlate with failing builds, such
as: code churn [19, 34], build tool [19], and statistics on the last build

and the history of the committer [31]. Hassan et al. [15] found that
build scripts can result in build failures and proposed an approach
to fix this kind of failing build automatically.

However, existing works that aim to characterize builds and
predict their outcomes are not proposed to save the cost of CI. In
contrast, my approaches are able to save CI computational cost
by predicting the build outcome, i.e., characterizing builds. My
approaches also don’t rely on the information of the previous build
to make predictions especially when the previous build is skipped.
Approaches to Reduce the Cost of CI.A popular effort to reduce
the cost of CI focuses on understanding what causes long build
durations e.g., [38]. Thus, most of the approaches skip tests within
builds, e.g., tests that historically failed less [9, 16], that have a long
distance with the code changes [29], that test unchanged modules
[37], or that are predicted to pass by a machine learning classifier
[27]. These techniques are based on regression test selection (RTS)
e.g., [13, 35, 43, 44]. While these techniques focus on making every
build cheaper, our work addresses the cost of CI differently: by
reducing the total number of builds that get executed and reducing
the number of tests in those executed builds. A related effort for
improving CI aims at prioritizing its tasks to provide early fault
observation. The most common approach in this direction is to
apply test case prioritization (TCP) techniques e.g., [8, 9, 26, 28, 30]
so that builds fail faster. Another similar approach achieves faster
feedback by prioritizing builds instead of tests [25] when there is
a queue of builds waiting for executed under limited computation
source. Prioritization-based techniques advance feedback but are
not able to save cost, i.e., all builds and tests still get executed.
Finally, other existing efforts to reduce cost in CI make individual
builds cheaper, by running less computation in them e.g., [6][12].

The most related existing research to my work is proposed by
Abdalkareem et al. [1, 2]. This prior work aims to predict and skip
builds that are likely to be skipped by developers. However, pre-
dicting builds that may be decided by developers to skip can limit
the cost-saving because it is not common for developers to skip
builds manually. In contrast, my work targets saving more cost in
CI by skipping unfruitful tasks, i.e., only executing a subset of tasks.
Also, my work aims at solving the main concern of adopting build
selection approaches — skipping failing builds.

3 PUBLISHEDWORK

I have already developed one novel build selection approach [20]
and evaluated it with other CI-improving approaches [22].

3.1 SmartBuildSkip

Research Method. I created my first build selection approach —
SmartBuildSkip to ensure that the build outcome predictor does
not require information from the previous build when the last build
is actually skipped. The design of SmartBuildSkip is based on
a novel conceptual separation of build failures into first and sub-
sequent failures, to improve the effectiveness of build prediction
models. SmartBuildSkip differentiates between first failures and
subsequent failures, following a two-phase process. First, Smart-
BuildSkip uses a machine-learning classifier to predict build out-
comes to catch first failures. After it observes a first failure, it then
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determines that all subsequent builds will fail — until it observes
a build pass and then changes its operation to predicting again.
To motivate my design, I performed two empirical studies, of the
prevalence of build passes over build failures, and of subsequent
failures over first failures. I also studied the factors that predict first
failures. Furthermore, I performed an evaluation of the extent to
which SmartBuildSkip can save cost in CI while keeping most
of its value, with the ability of customizing its cost-value balance.
This work is based on TravisTorrent dataset [5] including 274,742
builds from 359 projects.
Result. From the empirical studies, I found that the passing builds
represented a very large proportion (88% of all builds) for most
projects and there are many of subsequent failing builds (52% of
all failing builds). Both findings motivates the design of Smart-
BuildSkip. Regarding of features to predict first build failures, I
found that features related to task complexity such as number of
changed source lines are effective for first failure prediction. I also
found that some kinds of projects (e.g., older and bigger) are more
likely to fail. I encoded these findings into SmartBuildSkip and
evaluated it with the state-of-the-art build prediction technique
[14]. In our experiments, SmartBuildSkip significantly improved
the accuracy of the state-of-the-art build predictor — up to median
8% F-measure for first failures, and up to median 52% F-measure
for all failures. Finally, SmartBuildSkip ’s predictions resulted in
high savings of build effort. In its most conservative configuration,
SmartBuildSkip saved a median 30% of all builds by only incur-
ring a median delay of 1 build in a median 15% build failures. In a
more cost-saving-focused configuration, SmartBuildSkip saved
a median 61% of all builds by incurring a 2-build delay for 27% of
build failures.

3.2 Evaluate CI-Improving Approaches

Research Method. There are many existing approaches that are
proposed to improve CI. It will be beneficial for build selection
approaches to learn from those techniques. However, the exist-
ing CI-improving techniques have been evaluated under different
settings, making it hard to compare them. Thus, I performed the
first comprehensive evaluation of CI-improving techniques un-
der the same environment to understand the strengths of these
techniques for three dimensions: (D1) computational-cost reduc-
tion, (D2) missed failure observation, and (D3) early feedback and
provide evidence for researchers to design future CI-improving
techniques. The evaluation includes a replication of 14 variants of
10 CI-improving techniques from 4 technique families, representing
the two goals (time-to-feedback and computational-cost reduction)
and the two levels of granularity (build-level and test-level) for
which such techniques have been proposed. I used a collection of
metrics to measure the performance of CI-improving techniques
across the three dimensions. To compare the techniques in the same
environment, I extended the dataset used in §3.1 with: detailed test
and commit information. The new dataset is named CIBench [21].
Result. I have multiple interesting observations in term of all these
three dimensions that can recommend future build selection tech-
nique design. First, I observed that existing selection approaches
have no preference on saving long duration executions, i.e., they

generally don’t distinguish long duration builds or tests with short
duration ones. Therefore, the first evidence of future technique
design is that future selection approaches can be more targeted to
save more long duration executions. Then I found that those ap-
proaches that aim to save cost safely can still achieve high savings
but are not always safe, i.e., they still have some missed failure ob-
servation. Thus, I recommend future selection approaches to have
better definition of saving safe cost in CI — be safer in cost-saving.

Next, I found that build preparation phase is time consuming.
This shows an opportunity for test-granularity techniques to in-
centivize skipping full builds to be able to also skip the build-
preparation cost. On the other hand, skipping tests can still save
some cost. This incentive revealed the promise of hybrid test and
build selection techniques. Build selection techniques have the
strength of skipping many full builds, and test selection technique
shave the strength of skipping builds partially. Future hybrid tech-
niques could achieve both goals. I also observed that higher savings
means more missed failure observation, which also means a longer
in term of feedback time. This shows a trade-off between cost-
saving and failure-observation. Thus, future research could design
better techniques to break this trade-off as well as better metrics
to evaluate these approaches. Finally, I found that prioritization
approaches advance time-to-feedback, but provides no computa-
tional cost reduction. As a result, I recommend future techniques
to combine both selection and prioritization approaches in both
granularities.

4 WORK IN PROGRESS

I have also developed two build selection approaches in a safe mode
and hybrid mode. Both work are submitted and under review.

4.1 PreciseBuildSkip

Research Method. From the results of §3.2, I found that all build
selection approaches suffer from undesirable skipped failing builds,
even for those approaches that are supposed to skip builds safely. To
minimize the side-effect of mispredictions of failing builds by build-
selection approaches, I proposed PreciseBuildSkip as a technique
that provides cost-savings in CI while capturing an overwhelming
majority of failing builds. To achieve this goal, I firstly performed
two empirical studies to understand which builds are safe to skip.
I referred to CI-Skip rules [2] that are supposed to be safe and
extended them with more rules. I also developed Exceptions for
complementing CI-Skip rules. Additionally, I encoded the findings
of the empirical studies in an automated build-selection technique,
HybridBuildSkip and evaluated it with all existing build selection
approaches. Finally, I designed two novel metrics that are able
to compare build-selection techniques in a more comprehensive
way as a response to the findings in §3.2 that researchers should
design more comprehensive metrics for comparing build selection
approaches. This work uses the same dataset as §3.2.
Result. I performed multiple observations in my studies. First, I
observed that no CI-Skip rule is completely safe — all CI-Skip rules
captured some builds that ended up failing. Generally, as CI-Skip
rules provided higher potential cost savings, they also skipped
more failing builds. Therefore, CI-Skip rules cannot be used as-is
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to safely skip builds. Second, I identified the four main Exceptions
why builds under CI-Skip rules may fail: (1) changes in build scripts,
(2) in configuration files, (3) subsequent failures, and (4) increasing
platform numbers. In particular, the subsequent-failure Exception
was the most common. Thus I used all these four Exceptions to com-
plement CI-Skip rules. Third, my proposed safe approach to build
selection, PreciseBuildSkip, provided both higher cost saving and
failure observation rates than the state-of-the-art build-selection
techniques. I designed PreciseBuildSkip with customizable toler-
ance to failure observation (higher rates of skipped build failures
allow higher cost savings). When customized for highest safety,
PreciseBuildSkip observed 100% build failures, while still saving
5.5% of build executions. I also performed a sensitivity analysis,
in which I observed that our Exception features provided a strong
contribution to PreciseBuildSkip ’s cost savings and safety.

4.2 HybridBuildSkip

ResearchMethod.According to my previous work (see §3.2), both
build selection and test selection approaches miss some opportu-
nities for cost-saving: test selection approaches seldom skip time-
consuming build preparation phase and build selection approaches
cannot save cost in executed builds. Thus, I proposed the first hybrid
build selection approach — HybridBuildSkip that allows skipping
both full and partial builds. HybridBuildSkip also aims to address
the problem that PreciseBuildSkip is not able to provide high
cost-savings when observing the majority of build failures. Besides,
HybridBuildSkip also takes advantage of all existing approaches,
i.e., combines them in a hybrid way. I believe that hybridizing exist-
ing techniques can enlarge cost-saving while not sacrificing more
missed failure observations. Since HybridBuildSkip requires mul-
tiple prediction processes of other techniques which may incur a
concern that the actual execution time may cancel the its achieved
cost-saving. Therefore, I additionally compare the total execution
time of HybridBuildSkip with its saved duration to understand
the actual achieved cost-reduction. This work also uses the same
dataset as my previous work did (see §3.2).
Result. I observed that combining existing build selection tech-
niques in a hybrid way can help save cost more efficiently — Hy-
bridBuildSkip outperforms all existing techniques by saving more
cost while achieving same failure observations. I also found that
the feature of whether the build is a subsequent failing build is
the most effective feature for HybridBuildSkip. HybridBuildSkip
can be customized to save 9% of build duration while observing
100% of failing builds. I identified that skipping both full and partial
builds can improve the cost-saving productivity for CI build selec-
tion techniques while generally not sacrificing to skip more failing
builds or tests — the saved duration can be increased from 9% to
14% while the observed failing builds remain the same 100% and the
observed failing tests only drops from 100% to 99.4%. Additionally,
I demonstrated that the total execution time of HybridBuildSkip
is negligible compared to its saved build duration.

5 FUTUREWORK

In the future, I plan to perform a human study to understand how
to fit my approaches in practical context.

5.1 Increase Trust on Build Selection

Research Method. Applying my approaches as-is may produce
extra cost that barriers the adoption, e.g., extra explanation on pre-
diction result may be required to build the trust with developers.
Thus, I plan to perform a human study to understand the gap be-
tween technique design and its adoption in the industrial context
for build selection approaches including the extra cost produced
after applying one technique and how to build the trust between
techniques and developers. The result of this study can be used
to guide future technique design in a practical way by increasing
developers’ trust on build selection approaches. I expect to learn
what information of build selection technique is required for de-
velopers and what is their preference on the balance between cost
saving and observation of failures. Besides, the human study can
also involve insights on new features for build result prediction on
different types of build failures.
Current Progress.We expect to understand how our build selec-
tion approaches can fit practitioners’ usage context through this
project. For example, through understanding the preference on the
trade-off between cost-saving and mispredictions, we can get a
sense of what is the most appropriate sensitivity to tune the tech-
nique and make comparison between techniques. We can also focus
on predicting those failing builds that are more important to the
developers. Also, we expect to understand the extra cost produced
when applying a build selection technique. For example, developers
may not trust the prediction result until we provide supporting
information such as the most effective feature in this prediction. Fi-
nally, we want to collect the feedback about applying our technique
into developers’ industrial practice and design a technique that fits
better in the practical scenario. For this task, we have elaborated
a preliminary set of interview questions including questions of CI
usage and how to build trust on build selection approaches and we
have obtained IRB approval from Virginia Tech.

6 CONTRIBUTIONS

My dissertation work can provide multiple contributions. First, it
provides different ways to save the computational cost in Continu-
ous Integration by selectively executing builds. One of mywork [20]
has been published in ICSE’20. Second, my dissertation includes
the first comprehensive evaluation of CI-improving approaches.
This work provides evidence for researchers to design future CI-
improving techniques. This work also arises some problems for
researchers to address, e.g., design better metrics for evaluation.
This work [22] has been published in ICSE’21. Next, my disserta-
tion proposes comprehensive metrics for evaluation cost-saving
approaches in CI and hybridize existing works as a response to
my prior work. Finally, my dissertation pioneers in many aspects
in CI build selection, for example: My work is the first to propose
the trade-off between cost-saving and failure-observation in build
selection techniques and aim to address this problem by safe cost-
reduction. My work is the first to differentiate first and subsequent
failures to make predictors more practical and this has been demon-
strated as an important feature for build selection approaches. My
work is also the first work to combine build and test selection
approaches to enlarge cost-saving.
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